Wayne Reclamation & Recycling, Inc.

Interim Remedial Action Report

Columbia City, Indiana

August 1995

EPA Region 5 Records Ctr. 268220

TABLE OF CONTENTS

	1	
INTROI	DDUCTION	1-1
	2	
2.1 2.2		2-1
	3	
3.1 3.2 3.3 3.4 3.5 3.6 3.7	Groundwater Treatment System Soil Vapor Extraction Air Sparging system Off-Gas Treatment Systems Instrumentation & Controls	3-2 3-3 3-4 3-5 3-6 3-6
	4	
METAI	L SOILS	4-1
	5	
MONIT	TORING	5-1
	6	
CECLID	DITY FENCING	6.1

REMOVAL ACTIVITIES
8
ABANDONED OFFICE BUILIDNG/MAINTENANCE GARAGE
9
MODIFICATIONS
10
PREFINAL INSPECTION PUNCH LIST ITEMS
11
SYSTEM START-UP
12
CERTIFICATION
Table 1 Resolution of Prefinal Inspection Punch List Items
LIST OF FIGURES
Figure 1 Site Location Map Figure 2 Site Features Map

LIST OF APPENDICES

Appendix A	Geotechnical Testing Results				
	Table A1 Summary of Cut-Off Wall Geotechnical Testing				
	Table A2 Summary of Clay Cap Geotechnical Testing				
	A1 Backfill Material Samples				
	A2 Tie-In Material Samples				
	A3 Clay Cap Material Samples				
Appendix B	Photographic Documentation				
	B1 Groundwater Extraction System				
	B2 Groundwater Treatment System				
	B3 Soil Vapor Extraction & Air Sparging Systems				
	B4 Off-Gas Treatment System				
	B5 Instrumentation & Controls				
	B6 Treatment Building & Waste Solvent Building				
Appendix C	Force Main Compaction Results				
Appendix D	Change Orders & Field Orders				
	D1 Change Orders				
	D2 Field Orders				
Appendix E	System Start-up Analytical Results				
	E1 Influent/Effluent Water Samples				
	E2 Influent/Effluent Air Samples				
Appendix F	As-Built Drawings (under separate cover)				

F:\WRR\99A.WPD

1

Introduction

This report documents completion of the Non-City Settlors' portion of the Remedial Action at the Wayne Reclamation & Recycling (WRR) site in Columbia City, Indiana. Documentation of completion of the City Settlor's (i.e., Columbia City's) portion of the Remedial Action is provided separately by Columbia City's contractor (Geraghty & Miller). As outlined in the Record of Decision (ROD), the Remedial Action (inclusive of both the Non-City and City portions) included:

- Construction, operation and maintenance of a Soil Vapor Extraction (SVE) system in the volatile organic compound (VOC) contaminated soil areas;
- Construction, operation and maintenance of a groundwater extraction and treatment/discharge system;
- Delineation and remediation of lead-contaminated soils via soil washing or immobilization technologies, if those soils have the RCRA characteristics of toxicity;
- Delineation of the extent of the municipal landfill;
- Construction and maintenance of a RCRA Subtitle D compliant municipal landfill cap;
- Covering polyaromatic hydrocarbon (PAH) contaminated soil or consolidation under the municipal landfill cap;
- Imposing deed restrictions to ensure protection of the municipal landfill cap and PAHcontaminated soil cover, if any;
- Monitoring of groundwater and air;
- Installation of an upgraded security fence around the facility;
- Removing and treating contents of all above- and below ground tanks; delineation of the extent of contamination due to spills or leaks associated with the tanks, and remediation of such contamination; and
- Removal and disposal of site debris, including but not limited to all tanks, tanker trucks, and the incinerator.

As a Potentially Responsible Party, Columbia City completed the following Remedial Action activities:

- Delineation of the extent of the municipal landfill;
- Construction and maintenance of a RCRA Subtitle D compliant municipal landfill cap;
- Covering PAH-contaminated soil or consolidation under the municipal landfill cap;
- Imposing deed restrictions to ensure protection of the municipal landfill cap and PAHcontaminated soil cover; and
- Removal and disposal of the incinerator and landfill debris.

The remainder of the Remedial Action activities were completed by the Non-City Settlors and are the focus of this report. The Non-City Settlors' activities included:

- Construction of the soil vapor extraction system, the groundwater extraction system, and the off-gas and groundwater treatment system;
- Investigation of lead contaminated soils;
- Monitoring of groundwater and air;
- Installation of security fencing;
- Removal and disposal of the contents of all above- and below ground tanks; and
- Removal and disposal of site debris (except landfill debris).

In addition to the Remedial Action activities outlined in the ROD, the Non-City Settlors removed and disposed of waste material from the abandoned WRR office building/maintenance garage. The abandoned office building was boarded shut following removal of the waste material.

F:\WRR\99B.WPD

BACKGROUND

2.1 SITE DESCRIPTION

The WRR site is located in central Whitley County, approximately 20 miles northwest of Fort Wayne, Indiana (Figure 1). It is situated in the northern half of the southeast quarter of Section 11, Township 31 North (T31N), Range 9 East (R9E). The site, which is approximately 30 acres, is located on the southeast edge of the Columbia City limits, and is bounded on the south and east by the Blue River (Figure 2). It includes approximately 20 acres currently owned by WRR, 6 acres in the north owned by Holmes & Co., and 4 acres on the west owned by the City of Columbia City.

2.2 SITE HISTORY

In 1975, WRR, Inc. (WRR) purchased approximately 25 acres of land on the southeast edge of Columbia City, including a 13.6-acre portion owned by Columbia City since 1953. WRR, and its purported division, Wayne Waste Oil, began operating an oil reclamation business at the site in 1975. In 1976, a license to haul liquid industrial waste was granted by the Indiana Pollution Control Board. In 1982, WRR sold approximately 6 acres on the northern part of its property to Holmes & Co.

On behalf of WRR and one of its principals, Wayne Brockman, Beranek Associates, Inc. (Beranek, 1984) conducted a risk assessment for the site between March 1983 and June 1984. That assessment showed little potential for groundwater contamination or impact on the City drinking water supply, provided that the use of City Well #8 is limited. Furthermore, the risk assessment indicated that potential impact to the Blue River was low, except in the instance of a severe flood which could wash chemicals from the "sludge ravine" into the river. WRR did not perform a cleanup of the site. WRR continued operation of the site until approximatley 1989.

The U.S. EPA and about 100 potentially responsible parties (PRPs) entered into an Administrative Order by Consent, dated July 10, 1986, which required those PRPs to: install temporary fencing and warning signs; remove drums located on the surface of the site; excavate and remove certain buried drums; sample and test the contents of the removed drums; excavate liquids, sludges, and/or contaminated soil in the so-called "oil decanting pit," "sludge ravine,"

"tar pit," and "buried barrel area;" and dispose of all such removed materials. This work was performed from late summer 1986 to fall 1987.

Further removal work was performed by four companies named in an Administrative Order issued by U.S. EPA on February 17, 1988, which was then modified on March 29, 1988 and May 23, 1988. The work performed pursuant to the second order was conducted from May 1988 through March 1989, and included: removing, testing, and disposing of the contents of 125 additional drums; excavating and disposing of 5,400 tons of contaminated soil from the so-called "acid area," "discolored area," "ink sludge area," and "sludge ravine;" removing and disposing of the contents of 23 horizontal storage tanks; repairing chain link fence around the so-called "oil decanting pit," and "sludge ravine," installing a chain link fence around the "discolored area"; and backfilling the "acid pit" and "ink sludge area" with off-site borrow. Altogether, previous removal actions (excavations) have resulted in the removal of more than 13,000 tons of material from the site.

A Remedial Investigation (RI) and Feasibility Study (FS) for the WRR site were conducted and reports issued in June 1989, and January 1990, respectively. The Record of Decision (ROD) for the site was issued by the U.S. EPA on March 30, 1990.

In July 1990, a field investigation was conducted at the WRR site by Warzyn for the WRR Steering Committee. The purpose of the investigation was to provide preliminary information regarding selected areas of concern identified during the RI/FS and further identified in the draft U.S. EPA Statement of Work (SOW) for Remedial Design/Remedial Action (RD/RA), dated June 20, 1990. The results of this investigation were issued in a January 1992 report entitled Delineation of Extent of Selected Areas of Concern (Delineation Report) (Warzyn, 1992).

In accordance with the Consent Decree, a Work Plan for conducting the RD/RA was submitted to U.S. EPA. The Work Plan was approved with comment by U.S. EPA via letter dated June 11, 1992, which established November 9, 1992 as the due date of the Preliminary Design Report. Additional investigative field work (Additional Studies), as required by the SOW to support remedial design, was conducted by Warzyn from July through September 1992.

The results of the Additional Studies field investigation are presented in a technical memorandum entitled Results of Additional Studies in Support of Remedial Design (Tech Memo) (Warzyn, November 1992) as part of the Preliminary Design milestone submittal.

The Remedial Design was prepared by Warzyn from November 1992 through November 1993. The design process included submittals to the U.S. EPA at the Preliminary, Intermediate, and Final Design stages. The Remedial Design was approved by U.S. EPA (with comment) on January 5, 1994. The Remedial Design was issued for construction bids in March 1994. Roy F. Weston (Weston) was selected general contractor and began Remedial Action construction in June 1994.

Construction of the Remedial Design took place from June 1994 through January 1995. A Prefinal Inspection with U.S. EPA was conducted on January 27, 1995. The Final Inspection

with U.S EPA was conducted on May 18, 1995.				
F:\WRR\99C.WPD				

REMEDIAL ACTION

Construction of the Remedial Design at the Wayne Reclamation & Recycling site included:

- Construction of a 150 gallons per minute (gpm) groundwater extraction system including construction of a 1,600 ft long soil-bentonite cut-off wall;
- Construction of a groundwater treatment system, including a 5,800 ft long force main to deliver treated groundwater to the Columbia City publically owned treatment works (POTW);
- Construction of a 2,400 standard cubic feed per minute (scfm) soil vapor extraction system and a 100 scfm air sparging system;
- Construction of an off-gas treatment system;
- Installation of instrumentation and control equipment to operate the treatment system;
 and
- Construction of a treatment building and waste solvent building to house treatment equipment.

Weston of Vernon Hills, Illinois was the General Contractor and was responsible for all construction activities at the site. Weston employed several subcontractors to perform various activities. These subcontractors and their activities were:

- Environmental Drilling and Contracting Inc. of Holland, Michigan provided drilling services;
- Reiff Construction Company of Columbia City, Indiana constructed the treatment building and waste solvent building;
- Young's Environmental of Flint, Michigan constructed the forcemain and installed the on-site underground piping;
- Hogland Electric of Fort Wayne, Indiana provided electrical services;

- Industrial Piping and Engineering of Fort Wayne, Indiana provided mechanical services; and
- Bentec Engineering of Minneapolis, Minnesota provided instrumentation and control services.

Montgomery Watson performed resident engineering services including submittal review, construction documentation, quality assurance testing, and photographic documentation. CH₂MHill of Milwaukee, Wisconsin and Detroit, Michigan provided oversight for the U.S. Environmental Protection Agency (U.S. EPA).

As-Built drawing (Drawings) for construction of the Remedial Design are included in Appendix F.

3.1 GROUNDWATER EXTRACTION SYSTEM

The groundwater extraction system consists of 10 groundwater recovery wells installed in three areas of the site as follows: three recovery wells in the Aboveground Storage Tank (AST) area, one recovery well in the monitoring well (MW) 7S area, and six recovery wells in the southeast (SE) area (Drawing 70210D13). The extraction system also employs the use of a soil-bentonite cut-off wall, constructed to reduce the pumping rate necessary to produce an upward vertical gradient to the groundwater flow in the SE area. Extracted groundwater is pumped to the on-site treatment building through high density polyethylene (HDPE) piping.

The 10 groundwater recovery wells were installed using a hollow stem auger drill rig. In general, the wells consist of 20 ft to 35 ft of 6-inch diameter stainless steel well screen attached to schedule 80 PVC well riser. Each well is finished with a shut off valve and sampling port. The tops of the recovery wells are flush with the surface and are protected inside 36-inch square manholes. Construction details are shown on Drawing 70210D22.

Extracted groundwater is pumped separately from each of the three areas of the site to the treatment building. Groundwater from RW1, RW2, and RW3 in the AST area is pumped to a common 4-inch diameter HDPE header via 2-inch diameter HDPE piping. The header routes extracted groundwater directly to the treatment building. Piping is double-walled throughout its entire length from RW1, RW2, and RW3 to the treatment building to minimize the possibility of leakage of contaminated groundwater into uncontaminated areas of the site. The HDPE piping was joined using butt-fusion technology.

Groundwater from RW4 in the MW7S area is pumped through 1-1/2 inch diameter HDPE piping to the treatment building. Piping from this extraction well is also double-walled along its entire length.

Groundwater from RW5, RW6, RW7, RW8, RW9, and RW10 is pumped to a common 2-inch diameter HDPE header via 1-inch diameter HDPE piping. The header routes the extracted

groundwater directly to the treatment building. Piping outside of the slurry wall is double-walled. Piping from RW5 is routed through the cut-off wall and then ties into the HDPE header.

A cut-off wall surrounds the SE area (Drawing 70210D36). The cut-off wall was constructed using a soil/bentonite slurry mixing method. This construction method permitted the excavation of a deep, narrow trench with near-vertical sidewalls. In general, the construction consisted of mixing a bentonite slurry with excavated soil. The bentonite slurry maintained the trench shape by holding back the adjacent soils. Once a portion of the excavation reached the desired depth (i.e., the underlying confining layer), the trench was backfilled with a soil/bentonite mixture. The bentonite slurry migrates into the soil adjacent to the trench, filling voids with bentonite and developing a bentonite filter cake on the trench sidewalls. This bentonite layer has a lower permeability than surrounding soils and is the outer component of the cut-off wall. The inner component is the soil/bentonite mixture. Backfilling occurred at a rate similar to the excavation rate in order to retain the bentonite slurry in the trench at a constant level (typically 2 to 3 ft below the top of the trench). The slurry level was maintained at a higher level than the groundwater to provide an outward gradient from the trench. This outward gradient enables the bentonite slurry to migrate into the soil, thereby creating the outer bentonite filter cake. A layer of compacted clay was placed over the top of the soil-bentonite cut-off wall to cap the wall and provide a protective layer. This cap extends above grade to serve as a perimeter berm to control surface water run-on and run-off. Tie-in of the cut-off wall to the aquitard is shown on Drawings 70210D18 and 70210D19. Results of geotechnical testing conducted during cutoff wall construction are provided as Appendix A.

Photographic documentation of construction of the groundwater extraction system wall is included in Appendix B.

3.2 GROUNDWATER TREATMENT SYSTEM

The groundwater treatment system removes VOCs from extracted groundwater prior to discharge to the Columbia City POTW for final treatment and eventual discharge to the Blue River (Drawing 70210D20). Groundwater extracted from the 10 groundwater recovery wells is initially pumped to an influent storage tank for solids settling and equalization. The untreated water is transferred from the influent tank through a bag filter to the top of the air stripping tower via an electric pump, operated by automatic level controls in the influent tank. Water flows by gravity downward through the tower packing, while air flows upward through the tower, stripping off the VOCs from the groundwater. The treated water drains from the tower into an effluent sump. The tower off-gas is routed to an off-gas treatment system prior to discharge to the atmosphere.

To reduce clogging problems caused by precipitation, biological growth, and/or scaling, an anti-scalant agent is metered into the influent storage tank. Additionally, the stripping tower is equipped with an auxiliary cleaning package consisting of a centrifugal pump and piping to circulate a cleaning solution through the tower.

Treated groundwater is pumped from the effluent sump to the Columbia City POTW via a dedicated 6-inch diameter force main. The force main exits the WRR treatment building and travels southerly, crossing beneath the Blue River to the south bank. From the south bank, the force main runs westerly approximately 1200 ft, paralleling an existing Columbia City force main. The force main turns south, crossing Chicago Street and beneath the Conrail Railroad to Collins Street where it turns westerly and continues to Whitley Street. The force main continues southward in the Whitley Street right of way to Radio Road. The force main turns westerly, crosses under River Street and the Blue River to the Columbia City POTW. The force main terminates into the POTW's grit chamber effluent sump such that bypass of the WRR site effluent cannot occur.

Standard bore & jack equipment was used to advance the force main beneath the Conrail Railroad. The presence of a high water table prohibited the use of bore & jack equipment for the two crossings beneath the Blue River. For these crossings, horizontal guided bore equipment was used to advance the force main. Plan and profile views of the constructed force main are shown on Drawings 89570-01 through 89570-07. Compaction results of the backfill material placed during construction of the force main are provided as Appendix C.

Photographic documentation of construction of the groundwater treatment system is provided in Appendix B.

3.3 SOIL VAPOR EXTRACTION SYSTEM

The soil vapor extraction (SVE) system consists of 41 SVE wells in the SE area and 15 SVE wells in the AST area (Drawing 70210D14). The wells are spaced to remediate areas of known contamination. Extracted soil vapors are routed to the on-site treatment building through HDPE piping.

The SVE wells were installed using a hollow stem auger drill rig to approximately 15 ft below grade; fully penetrating the vadose (unsaturated) zone. A porous area, used to extract vapors, was created in each well by backfilling the borehole to approximately 4 ft below grade with a coarse stone. During backfilling, a 4-inch diameter PVC well riser was placed into the coarse stone and extended to approximately 2 ft above grade. This PVC riser acts as the body of the SVE well. The top of the riser is fitted with a vacuum gauge.

The coarse stone is separated from the surficial soils by a clay seal. Service saddles connect the SVE wells to extraction piping. Each well is equipped with a shut-off valve and air velocity measurement access port. Construction details are shown on Drawing 70210D23.

In the SE area, the SVE wells are grouped together onto branch lines. Each well is connected via underground piping to one of six branch lines. Approximately six to eight SVE wells are attached to each branch line. As shown on Drawing 70210D14, the six branch lines are designated Branch A, Branch B, Branch C, Branch D, Branch E, and Branch F. All six branch lines connect to a one main trunk line that conveys extracted vapors back to the treatment

building. Operation of individual SVE wells is controlled manually by the shut-off valve located at each well. Operation of groups of SVE wells is controlled automatically by the control valves CV-SVE(A), CV-SVE(B), CV-SVE(C), CV-SVE(D), CV-SVE(E), and CV-SVE(F). These control valves are housed in 36-inch square manholes at the head of each branch line.

In the AST area, each SVE well is connected via underground piping to one of two branch lines that convey extracted vapors to the treatment building. As shown on Drawing 7021D14, these branch lines are designated as Branch G and Branch H. Operation of Branch G and Branch H is controlled by control valves CV-SVE(G) and CV-SVE(H) located in treatment building.

To achieve the most efficient operating conditions, the SVE system operates as a pulsed system, such that Branches A through H extract vapors at specific time intervals controlled by an adjustable timer in the computer system. This pulsing maintains a high influent VOC level in extracted soil vapors by optimizing equilibrium conditions and limits the creation of stagnant zones.

Photographic documentation of construction of the SVE system is included in Appendix B.

3.4 AIR SPARGING SYSTEM

The air sparging system consists of 40 sparging clusters in the SE area of the site (Drawing 70210D15). A cluster is located adjacent to each SVE well in the SE area. Compressed air is blown from the sparging air compressor in the treatment building to the sparging wells through HDPE piping.

Each sparging cluster consists of two air sparging wells (i.e., a shallow well and a deep well). The shallow/deep cluster is necessary to provide treatment of soils above and below the thin clay layer located at approximately 20 ft to 25 ft below grade. The shallow air sparging well is installed such that its screen is set at the top of the thin clay layer. The deeper air sparging well is set with a screen at the base of the upper aquifer. Each well is instrumented with an air flow rotameter, ball valve, and pressure gauge. Construction details are provided on Drawing 70210D23.

The sparge wells are manifolded and controlled in a similar fashion to the SVE system. Compressed air is pushed from the sparging air compressor in the treatment building to the southeast area through a 2-inch HDPE trunk line. As shown on Drawing 70210D15, branch lines Branch A, Branch B, Branch C, Branch D, Branch E, and Branch F branch off the trunk line to feed the air sparging wells. Operation of the branch lines is controlled by control valves CV-AS(A), CV-AS(B), CV-AS(C), CV-AS(D), CV-AS(E), and CV-AS(F).

These control valves are housed in the 36 inch square manholes located at the head of each branch line. The air sparging system is pulsed and operates concurrent with the associated SVE system.

Photographic documentation of construction of the air sparging system is included in Appendix B.

3.5 OFF-GAS TREATMENT SYSTEM

The off-gas treatment system removes volatile organic compounds (VOCs) from the off-gases of the air stripping tower and the SVE system prior to discharge to the atmosphere. The combined air stream of the air stripping tower and the SVE system is drawn through an air filter and moisture separator by two 100-horsepower, multistage, centrifugal blowers connected in parallel. After exiting the blowers, the untreated air stream is pushed through a heat exchanger to the Purus Adsorb Desorb Remediation Equipment (PADRE).

The PADRE system utilizes three synthetic resin adsorption beds to remove VOCs from the air stream. The PADRE system is designed to operate with two beds treating the VOC laden air stream and the third bed undergoing regeneration. The beds are automatically switched back and forth between adsorption and desorption cycles with an on-board control system. The desorption cycle utilizes a combination of temperature, pressure, and a carrier gas to regenerate the sorbent bed. During the desorption cycle, the organic contaminants trapped in the adsorbent material are removed, condensed, and transferred, as a liquid condensate, to a waste product storage tank. Treated vapors are discharged to the atmosphere through a 30-ft high stack. Flow diagrams for the off-gas treatment system are shown on As-Built drawings 70210D07, 70210D08 and 70210D10.

Photographic documentation of construction of the off-gas treatment system is included in Appendix B.

3.6 INSTRUMENTATION AND CONTROLS

The treatment system is monitored and controlled by a personal computer located in the treatment plant and can be accessed at a remote location by the Operations and Maintenance contractor. The computer-based system employs remote input/output modules communicating with the host computer. The system employs graphics to monitor and control the real-time processes and employs an object-based drawing editor and sub-routine library to permit point-and-click drawings of the plant systems. Each graphic object is tied to color changes, fill/unfill, high level/low level alarm, etc. to respond to changing applications, data or user input. The system employs routines for trending and plotting and alarm reporting.

A telephone link ties this control system to the Columbia City POTW facility to shut down the treatment plant when influent flow to the POTW is maximized. This shut down process operates on a time delay basis to prevent shut down due to temporary surges at the POTW facility, and the time delay is adjustable to optimize the control. When shut down does occur, the treatment effluent pumps stop and the treatment systems shut down.

The PADRE system, which operates on its own programmable logic controller (PLC), is continuously monitored by the treatment control system. Regeneration of the PADRE system is automatic and specific run time and delay time, as programmed in its controller, is maintained on plant startup after shut down.

The computer controls the interval and duration times of the SVE and air sparging system pulsing. These times are adjustable through the computer terminal. All valves associated with the SVE and sparging system are monitored and the open/close state is displayed on the computer graphics. Groundwater pumps are controlled by water levels through the computer. Well levels in extraction wells are continuously monitored and displayed. All motor control is through starters in the motor control center (MCC). The 120V panel board for building services is also integral to the MCC. Details of the MCC are shown on Drawing 70210D30.

Photographic documentation of the instrumentation and control system is provided in Appendix B.

3.7 TREATMENT BUILDING AND WASTE SOLVENT BUILDING

Treatment and process equipment is housed in an on-site treatment building. The treatment building is a pre-engineered metal structure measuring approximately 40 ft by 50 ft (Drawings 70210D33 and 70210D35). A separate building, the waste solvent building, houses a steel tank that stores the liquid condensate from the PADRE off-gas treatment equipment (Drawing 70210D34). All equipment and fixtures in the waste solvent building are explosion-proof in consideration of the nature of the condensate. Photographic documentation of construction of the treatment building and the waste solvent building is provided in Appendix B.

F:\WRR\99D.WPD

METAL AREAS

The ROD required that metal contaminated soils determined to have the RCRA characteristic of toxicity be remediated by the use of either soil washing or immobilization/stabilization. It also required the Settling Defendants to conduct treatability studies to determine whether the technologies could be used to meet the performance standard. The SOW further required that metal-contaminated soil included the soil in the vicinity of soil boring SB-17 and SB-17A (the area west of the former police shooting range and north of the freshwater pond), underground tanks, diked vertical/horizontal tank areas, plus all soils identified and delineated as metalscontaminated soils.

The soil in the vicinity of SB-17 and SB-17A was investigated during the Delineation Study conducted by Warzyn in July 1990, and further investigated during the pre-design Additional Studies in August, 1992. Results of these investigations delineated the area impacted by detectable levels of metals (specifically lead) in soil borings near SB-17 and SB-17A. From these investigations it was determined that the soil was not leaching lead at levels above 5 mg/l, as determined by the TCLP analytical method, and therefore did not exhibit the RCRA characteristic of toxicity. Consequently, soil in the area of SB-17 and SB-17A did not require treatment to meet the performance standard set forth in the ROD.

The soil in the underground storage tank (UST) area and the aboveground storage tank (AST) area was investigated in the Delineation Study to determine if metal-contaminated soil was present in these areas. From this investigation it was determined that metal-contaminated soil was not present in either the UST or AST area. Therefore, soil washing or immobilization/stabilization of soils was not necessary.

Additional information regarding the delineation of metal-contaminated soil can be found in the following documents:

- Delineation of Extent of Selected Areas of Concern (Warzyn, January, 1992);
- Technical Memorandum, Results of Additional Studies in Support of Remedial Design (Warzyn, November, 1992); and
- Preliminary Design (Warzyn, November, 1992).

F:\WRR\99E.WPD

MONITORING

Groundwater and air monitoring required by the ROD has been initiated. As outlined in *Section 11 - Startup*, air monitoring of the treatment system off-gas emissions has begun to document that air emissions do not exceed a 1.0×10^6 cumulative life time cancer risk. Site groundwater monitoring is addressed in the Operations, Maintenance, and Monitoring Plan (Montgomery Watson, August 1995).

F:\WRR\99F.WPD

FENCING

To prevent access, an 8-ft high security fence with three strands of barbed wire was erected around the entire site (Drawing 70210D12). The fencing was installed in three phases (Phase I, Phase II, and Phase III). Phase I fencing began in the southwest corner of the site (along the Blue River) and extended northward to the northwest corner of the site then east to the main entrance of the site (i.e., the Ellsworth entrance). Phase II fencing began at the Ellsworth entrance and extended north to enclose the wetlands and east to enclose the adjacent landfill. The Phase II fencing terminated at the northeast corner of the landfill (along the Blue River). Phase III fencing follows the route of the Blue River along the eastern and southern boundaries of the site connecting the termination of the Phase II fencing to the beginning of the Phase I fencing. All fencing was completed by June 1995.

F:\WRR\99G.WPD

REMOVAL ACTIVITIES

With the exception of tanker truck #23, removal of the abandoned USTs, ASTs, tanker trucks, and miscellaneous equipment was completed during the period from December 1993 to May 1994. Montgomery Watson was responsible for removal activities and employeed several subcontractors to assist with this task. Montgomery Watson's subcontractor's and their tasks included:

- Heritage Environmental Services, Inc. of Indianapolis, Indiana provided transport and disposal of waste material removed from the USTs, ASTs, and tanker trucks;
- Reidel Environmental Services, Inc. of Romulus, Michigan cleaned and rendered as scrap the USTs, ASTs, and tanker trucks; and
- Simmons Equipment Sales, Inc. of Columbia City, Indiana removed and disposed off as scrap metal the USTs, ASTs, tanker trucks, and miscellaneous equipment.

Wastes removed from the USTs, ASTs, and tanker trucks was disposed of at the Heritage disposal facility in Indianapolis, Indiana.

Tanker truck #23 contained approximately 1,500 gallons of viscous tar that presented unique disposal obstacles. Ultimately, the tank was cut away from the body of the tanker truck, emptied into a sealed roll-off box, and transported off-site for proper disposal. The tar material was disposed of at the Chemical Waste Management facility in Morrow, Georgia. The shell of the tank is at a Chemical Wast Management RCRA holding facility awaiting future disposal at the Chemical Wast Management facility in Emelle, Alabama.

A total of 5 USTs, 13 ASTS, 17 tanker trucks, and miscellaneous equipment were emptied, cleaned, and removed from the site.

F:\WRR\99H.WPD

ABANDONED OFFICE BUILDING/MAINTENANCE GARAGE

To prevent the possibility of future releases to the environment the waste material in the abandoned office building/maintenance garage was removed and properly disposed. The waste material included: waste oil, gear lubricant, paint, chassis lube, and grease. The waste material was removed from the abandoned building and transported to the Treatment One disposal facility in Houston, Texas in June 1995. Following the removal of the waste material from the abandoned building, the building was boarded shut to prohibit access.

F:\WRR\99J.WPD

MODIFICATIONS

Twenty-one modifications were made to the Remedial Design during construction. These modifications were documented using Change Order forms and Field Order forms, as appropriate. A Change Order form was used to document an addition, deletion, or revision in the work involving a change in contract price or schedule. A Field Order form was used to document a change in the work not involving a change in price or schedule. Copies of all Change Orders and Field Orders were provided to U.S. EPA (via CH₂M Hill oversight personnel) during construction along with a request for written approval or comments. U.S. EPA elected to not provide written approval or comments concerning Change Orders or Field Orders. Prior to construction, during contract negotiations, the configuration of the SVE wells was changed to Weston's patented configuration. Drawing 70210D23 shows the SVE well configuration.

Modifications to the Remedial Design included:

- 1. Change Order #1 Monetary change only, therefore details not provided.
- 2. <u>Change Order #2</u> Seven additional soil vapor extraction (SVE) wells were added in the AST area to address contamination discovered during underground storage tank removal.
- 3. Change Order #3 The force main piping beneath State Route #9 was installed using horizontal guided bore equipment in place of open cutting.
- 4. Change Order #4 Additional openings were added to process tanks T1 and T2 to allow proper finishing and inspection. The tank schedule on Drawing 70210D25 reflects these changes.
- 5. <u>Change Order #5</u> Monetary change only, therefore details not provided.
- 6. <u>Change Order #6</u> At the request of Columbia City, an additional 1 inch of bituminous pavement was added to the roadways receiving resurfacing as a result of force main construction.
- 7. Change Order #7 The site safety switch was upgraded from 600 amps to 800 amps.

- 8. <u>Change Order #8</u> At the request of Columbia City, the tap in of the force main piping at the POTW's grit chamber was made over the top in place of through the side. This change allows POTW personnel to quickly determine the status of the WRR treatment system.
- 9. <u>Field Order #1</u> The gravel access road leading to the treatment building was relocated approximately 20 ft north to minimize the amount of clearing and grubbing.
- 10. Field Order #2 At the request of the air release valve manufacturer, the slope of some sections of the force main was modified.
- 11. <u>Field Order #3</u> The elevation of the east decontamination pad was raised to avoid the possibility of run on from the gravel access road.
- 12. <u>Field Order #4</u> At the contractor's request, the alignment of the cut-off wall was modified to facilitate excavation along the Blue River. The location of the cut-off wall is shown on Drawing 70210D12.
- 13. Field Order #5 The exterior surface preparation and coating of steel tanks T1 and T5 were revised to reduce the possibility of pinhole leaks.
- 14. <u>Field Order #6</u> At the contractor's request, plastic fittings were allowed on the sanitary discharge line from the treatment building restroom to the septic tank.
- 15. <u>Field Order #7</u> At the contractor's request, a corrugated polyethylene tubes were allowed in place of the corrugated metal tubes in construction of the decontamination pads.
- 16. <u>Field Order #8</u> The slope of some sections of the force main was modified to correct for an error in the design drawings.
- 17. <u>Field Order #9</u> The air release valve detail was modified to divert blowoff away from the valve.
- 18. Field Order #10 The depth of several SVE wells was clarified as a result of the switch from the designed SVE well configuration to Weston's patented SVE well configuration.
- 19. <u>Field Order #11</u> At the contractor's request, the technique for installation of the force main piping beneath the Blue River was changed from bore & jack to horizontal guided bore.
- 20. Field Order #12 At the contractor's request, the location of RW5 was modified to allow access by a drill rig.

21. Field Order #13 - Specifications were provided to the contractor for replacement of wells damaged during construction.					
Copies of the above referenced Change Orders and Field Orders are provided in Appendix D.					
F:\WRR\99N.WPD					
Interim Remedial Action Report August 1995 Wayne Reclamation & Recycling, Inc.					

PREFINAL INSPECTION PUNCH LIST ITEMS

The Prefinal Inspection for the Wayne Reclamation & Recycling site was held on January 27, 1995 and was attended by representatives of U.S. EPA, Roy F. Weston, Montgomery Watson, CH₂M Hill, Masco, and Purus (manufacturer of off-gas treatment equipment). The Prefinal Inspection identified several construction items that required correction prior to the Final Inspection. Table 1 summarizes the resolution of the Prefnal Inspection punch list items.

F:\WRR\99K.WPD

11

SYSTEM START-UP

Start-up of the treatment system at the WRR site was conducted from February 1995 through June 1995. Start-up and shake down of the groundwater and off-gas treatment equipment was conducted using potable water and ambient air. Once it was determined that the treatment equipment was operating correctly, the groundwater extraction system, the soil vapor extraction system, and the air sparging system were phased into operation. Treatment system sampling during the start-up phase was conducted under the Draft Operations & Maintenance Plan (Warzyn, November 19, 1993) as supplemented by Montgomery Watson's February 7, 1995 letter to the U.S. EPA. Analytical results from the start-up sampling events are provided as Appendix E.

Analysis of the analytical results indicates that although the treatment system is effective in removing VOCs from both the groundwater and the off-gas streams the treatment system may require further optimization of treatment efficiencies. Discussions with equipment vendors have been initiated to optimize treatment equipment performance. Additionally, work is being done to standardize operating and sampling procedures that will facilitate future evaluation of treatment system performance. Future sampling will be submitted in accordance with the final Operations, Maintenance, and Monitoring Plan.

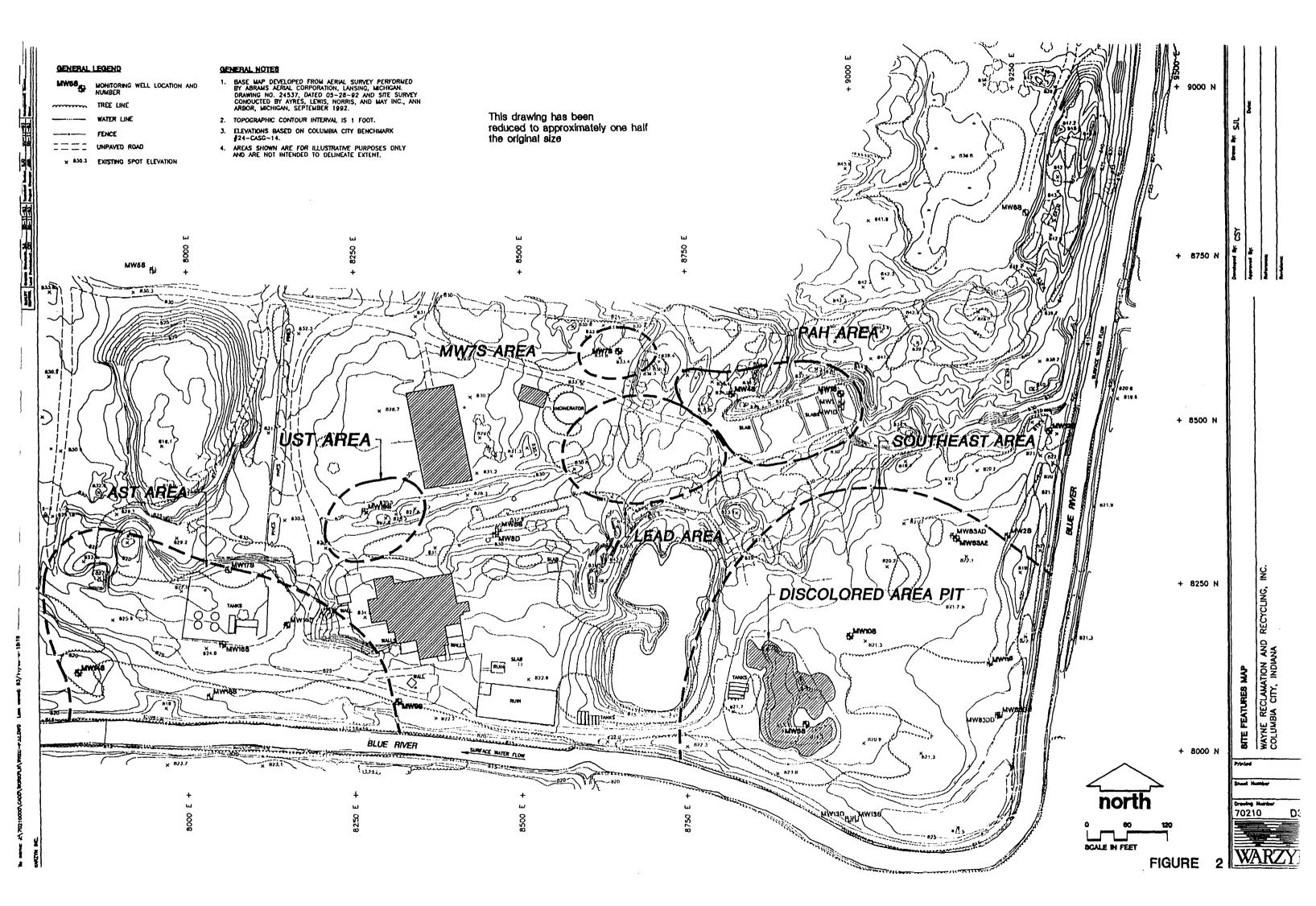
F:\WRR\99L.WPD

CERTIFICATION

Based on field observations made during construction, photographic documentation, and geotechnical testing results, I certify the Remedial Design has been constructed consistent with the Technical Specifications, Remedial Design drawings, and approved Change Orders and Field Orders. Based upon observations made during system start-up and analytical testing results, the system is effectively removing and treating volatile organic compounds from site soil and groundwater.

Joseph D. Adams Jr., P.E. Project Coordinator

F:\WRR\99M.WPD


TABLE 1

Resolution of Prefinal Inspection Punch List Items Wayne Reclamation and Recycling Columbia City, Indiana

Punch List Item	Resolution
1. Install cover on septic tank.	Complete
2. Complete grading and seeding.	Complete
3. Check all pressure probes for caps.	Complete
4. Backfill data cable trench in SE area.	Complete
Backfill around groundwater recovery wells RW5, RW7, RW8, RW9, and RW10.	Complete
6. Close sample taps in groundwater recovery wells RW9 and RW10.	Complete
Attach riser stem to shut off valve on groundwater discharge line from RW7.	Complete
 Install a 3-inch cap on the ball valve access ports to SVE wells SVE5, SVE19, and SVE25. 	Complete
 Install a 6-inch cap on air velocity measurement port to SVE wells SVE5, SVE19, SVE24, and SVE25. 	Complete
10. Backfill and level pad around SVE wells SVE17 and SVE19.	Complete
11. Complete aboveground construction of SVE/AS wells #20 including piping, backfill, caps, etc.	Complete
12. Complete installation of vacuum gauges on remainder of SVE wells in SE area and all SVE wells in AST/UST area.	Complete
13. Open ball valves to SVE wells SVE20, SVE22, SVE39, SVE41, SVE42, SVE45, SVE50, and SVE55.	Complete
14. Remove soil from ball valve access ports to SVE wells SVE14, SVE20, SVE27, SVE39, SVE22, SVE40S, SVE33, SVE45, SVE55, and SVE50.	Complete
15. Check air velocity measurement ports near control panel boxes in	Complete
SE area for protective 6-inch sleeve and cap.	•
16. Align the protective 6-inch sleeve surrounding the 1-inch air velocity measurement port to following SVE wells: SVE1, SVE9, SVE14, SVE16, SVE18, SVE26, and SVE28. Check access ports to SVE2, SVE20, and SVE27.	Complete
17. Construct warning signs at crossing of force main beneath railroad track.	Incomplete*
18. Receive and place anti-scalent drums.	Complete
19. Install by-passes around flow meters FM-4 and FM-5.	Complete
20. Install sinks.	Complete
21. Install water heater.	Complete
22. Label piping.	Complete
23. Install lightning protection system.	Complete
24. Correct fault air release valve(s) at air release manhole No. 3.	Complete
25. Remove Tank Track No. 23 from AST/UST Area.	Complete
26. Move trees and stumps to central area of site.	Complete

^{*} Construction of force main warning signs to be completed by O & M contractor.

A GEOTECHNICAL TESTING RESULTS

Table 1
Summary of Cut-Off Wall Geotechnical Testing
Wayne Reclamation and Recycling
Columbia City, Indiana

Sample <u>I.D.</u>	Coefficient of Permeability (cm/s)	P ₂₀₀ Content	USCS Classification
Backfill Material			
Backfill #1 (Sta. 1+00)	2.90E-08	39.10%	SC
Backfill #2 (Sta. 15+50)	1.60E-08	43.10%	SC
Backfill #3 (Sta. 14+00)	1.10E-08	49.00%	SC
Backfill #4 (Sta. 11+50)	1.10E-08	49.70%	SC
Backfill #5 (Sta. 9+50)	N/A	38.30%	N/A
Backfill #6 (Sta. 9+00)	5.80E-09	32.50%	SC
Backfill #7 (Sta. 6+50)	1.30E-08	37.40%	SC-SM
Backfill #8 (Sta. 4+00)	9.00E-09	39.30%	SC-SM
Backfill #9 (Sta. 2+00)	1.90E-08	31.30%	SM
Tie-In Material			
Tie-In #1 (Sta. 15+60)	N/A	N/A	SM
Tie-In #2 (Sta.13+00)	N/A	N/A	SM
Tie-In #3 (Sta. 10+50)	N/A	N/A	CL-ML
Tie-In #4 (Sta. 8+00)	N/A	N/A	ML
Tie-In #5 (Sta. 5+50)	N/A	N/A	SC-SM
Tie-In #6 (Sta. 2+90)	N/A	N/A	SM
Tie-In #7 (Sta. 1+10)	N/A	N/A	CL

Notes:

1. N/A = Not Analyzed

Table 2


Summary of Clay Cap Geotechnical Testing
Wayne Reclamation and Recycling
Columbia City, Indiana

Sample	Coefficient of	USCS
<u>I.D.</u>	Permeability (cm/s)	Classification
		~
Station 0+00	6.60E-08	CL
Station 4+00	5.40E-08	CL
Station 9+00	7.10E-08	CL
Station 11+50	2.60E-08	CL

Notes:

1. N/A = Not Analyzed

A1 BACKFILL MATERIAL SAMPLES

FLEXBLE WALL FALLING HEAD PERMEABILITY TEST RESULTS

PROJECT: WAYNE RECLAMATION & RECYCLING

LOCATION: Columbia City, Indiana

Job No.	25014610 9/12/94	/355
Date	9/12/94	
	_i	of

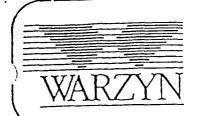
WARTIN ENGINEERING INC. - ONE SCIENCE COURT + UNIVERSITY RESEARCH PARK + P.O. BOX 5385 + MADISON, WISCOMSIN 53705

SAMPLE	Backfill M	aterial #1:	STA 1+00			
DEPTH						
SOIL DESCRIPTION (Visual)	Gray Clayey Fine- Coarse SAND, Little Gravel (SC)			:		
<u> </u>	INITIAL	FINAL	INITIAL	FINAL	INITIAL	FINAL
SAMPLE DIAMETER (cm)	5.08	4.90				-
SAMPLE AREA, A (cm ²)	20.27	18.85				
SAMPLE LENGTH, L (cm)	5.08	4.90				
MOISTURE CONTENT, \$	23.1	17.3				
DRY DENSITY (PCF)	110.9	119.4				
HAXIHUM GRADIENT	43.0	43.0				
NET CONFINING PRESSURE (PSI)	5.0	5.0				

COEFFICIENT OF PERMEABILITY, k (cm/sec)

RUN NO. 1	-8		
RON NO. 1	3.1×10^{-8}	<u> </u>	
2	3.0 x 10 ⁻⁸		
3	2.7×10^{-8}	·	
4.	2.7 x 10 ⁻⁸		
5	2.7 x 10 ⁻⁸		
6	3.2 ·x 10 ⁻⁸		
7	3.0×10^{-8}		·
8	3.1 x 10 ⁻⁸		·
9 .	3.0×10^{-8}		
10	3.1×10^{-8}		
AVERAGE k, (cm/sec)	2.9 x 10 ⁻⁸		

FORMULA:


$$K = \frac{2.3 \text{ a L}}{\text{At}} \log 10 \frac{\text{ho}}{\text{hl}}$$

Where a = cross-sectional area of standpipe, t = time for water level to fall from initial height, hg, to final height, hg (All other terms are defined above)

B parameter for each test was greater than $95\ \%$ prior to performing permeability tests. P200 Content = 39.1%

Tested by CLS

Checked by DUN

PROJECT: WAYNE RECLAMATION & RECYCLING

LOCATION: Columbia City, Indiana

Job Ne	25014610. 9/12/94	/355
Date	9/12/94	
Sheet	1	_d _l_

WARZYN ENGINEERING INC. . ONE SCIENCE COURT . UNIVERSITY RESEARCH PARK . P.O. HOX 5,85 . MADISON, WISCONSIN 53705

SAMPLE	Backfill M	aterial #2;	STA 15+50			
DEPTH						
SOIL DESCRIPTION (Visual)	Gray Claye Coarse SAN Gravel (SC					
	INITIAL	FINAL	INITIAL	FINAL	INITIAL	FINAL
SAMPLE DIAMETER (CM)	5.08	4.68				
SAMPLE AREA, A (cm ²)	20.27	17.23				
SAMPLE LENGTH, L (cm)	5.08	4.70				
MOISTURE CONTENT, %	23.1	19.4				
DRY DENSITY (PCF)	114.6	141.3				
MAXIMUM GRADIENT	44.8	44.8				
NET CONFINING PRESSURE (PSI)	5.0	5.0				
		ENT OF PERM	EABILITY, k	(cm/sec)		
RUN NO. 1	1.6 x 10					
2	1.7 x 10				<u> </u>	·
3	1.6 x 10			·	<u> </u>	······································
4.	1.7 x 10 ⁻⁸					
5	1.5 x 10 ⁻⁸			·		
6	1.5 x 10 ⁻⁸					
7	1.5 x 10~	8			ļ	
8	1.4 x 10	8 				
9	1.7 x 10	8				

FORHULA:

$$K = \frac{2.3 \text{ a L}}{\text{At}} \quad \log 10 \quad \frac{\text{ho}}{\text{hl}}$$

10

AVERAGE k, (cm/sec)

 1.6×10^{-8}

Where a = cross-sectional area of standpipe, t = time for water level to fall from initial height, ho, to final height, hi (All other terms are defined above)

B parameter for each test was greater than 95 % prior to performing permeability tests. P200 Content = 43.1 %

Tested by CLS

Checked by 1711

PROJECT: WAYNE RECLAMATION & RECYCLING

LOCATION: Columbia City, Indiana

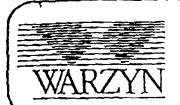
J00 N0	25014610	
Date _	10/17/94	
Sheet.	1	of 1

"WARZYN ENGINEERING INC. + ONE SCIENCE COURT + UNIVERSITY PESCARCH PARK + P.O. BOX 5,815 + AMDISON, WISCONSIN 53705

SAMPLE	Backfill M	aterial #3				
LOCATION	STA. 14+00					
SOIL DESCRIPTION (Visual)	Gray-Brown SAND, Litt (SC)	Clayey F-C le Gravel				
	INITIAL	FINAL	INITIAL	FINAL	INITIAL	FINAL
SAMPLE DIAMETER (CM)	5.08	4.95				•
SAMPLE AREA, A (cm²)	20.27	19.26				
SAMPLE LENGTH, L (cm)		4 95				
HOISTURE CONTENT, #	25.6	18.8				
DRY DENSITY (PCF)	103.8	112.2				
MAXIHUM GRADIENT	42.5	42.5				
NET CONFINING PRESSURE (PSI)	5.0	5.0				·
		ENT OF PERME	ABILITY, k	(cm/sec)		
RUN NO. 1	1.1 x 1	0-8				
2	1.1 x 1	0 ⁻⁸				
3	1.1×1	0-8				
4.	1.1 x 1	0-8				
5	9.3 x 1	0-9				
6						
7						
8						
9						
10						
AVERAGE k. (cm/sec)	1 1 y 1	n-8				

FORMULA:

$$K = \frac{2.3 \text{ a L}}{\text{At}} \log 10 \frac{\text{ho}}{\text{hl}}$$


Where a = cross-sectional area of standpipe, t = time for water level to fall from initial height, hg, to final height, hg (All other terms are defined above)

B parameter for each test was greater than 95% prior to performing permeability test

P200 Content: 49.0 %

Tested by CLS

Checked by CLS / DLA

PROJECT: WAYNE RECLAMATION & RECYCLING

LOCATION: Columbia City, Indiana

**** OOL #5** 1 MAI DANN DEFOEDTA!!!

Job No	25014610/355 10/5/94	
	1 of _	

WARDYN ENCINEERING RIC. + ONE SCIENCE COURT + UNIVERSITY PESEARCH PARK + P.O. WOX 5 MS + MADISON, WISCONSIN 53705

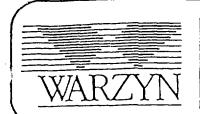
SAMPLE	Backfill M	aterial #4				
LOCATION	STA 11+50	STA 11+50				
SOIL DESCRIPTION (Visual)	Gray-Brown SAND, Litt (SC)	Clayey le Gravel				
	INITIAL	FINAL	INITIAL	FINAL	INITIAL	FINAL
SAMPLE DIAMETER (CR)	5.08	5.08				
SAMPLE AREA, A (cm²)	20.27	20.27				
SAMPLE LENGTH, L (cm)	5.08	5.08				
MOISTURE CONTENT, \$	24.6	18.6				
DRY DENSITY (PCF)	108.9	107.3				
HAXIMUM GRADIENT	41.5	41.5				
NET CONFINING PRESSURE (PSI)	5.0	5.0				
	COEFFICI	ENT OF PERM	EABILITY, k	(cm/sec)		
RUN NO. 1	1.4 x 10	8		· · · · · · · · · · · · · · · · · · ·		
2	77 4 10-	9				
3	1.1 x 10	J		٠		
4.	1.2 x 10	8				
5	1.2 x 10.	B .				
6	1.1 x 10	8				
7						
8						
9 .						
10						

FORMULA:

$$K = \frac{2.3 \text{ a L}}{\text{At}} \quad \log 10 \quad \frac{\text{ho}}{\text{hi}}$$

1.1 x 10⁻⁸

Where a = cross-sectional area of standpipe, t = time for water level to fall from initial height, hq. to final height, hq (All other terms are defined above)


B parameter for each test was greater than 95 % prior to performing permeability tests

P200 Content: 49.7 %

Dested by CIS

AVERAGE k, (cm/sec)

Checked by CLS/DIM

FLEXIBLE WALL FALLING HEAD

PERMEABILITY TEST RESULTS

PROJECT: WAYNE RECLAMATION & RECYCLING

LOCATION: Columbia City, Indiana

Job No.	25014610/ 9/12/94	355
Date _	9/12/94	
Sheet_	1	or <u>1</u>

WARTIN ENGINEERING INC. + ONE SCIENCE COURT + UNIVERSITY RESEARCH PARK + P.O. HOX 5385 + M-DISON, WISCONSIN 53705

SAMPLE	Backfill M	aterial #6;	STA 9+00			
DEPTH	-					
SOIL DESCRIPTION (Visual)	Gray Claye Coarse SAN Gravel (SC	D, Little				
	INITIAL	FINAL	INITIAL	FINAL	INITIAL	FINAL
SAMPLE DIAMETER (CM)	5.08	4.85				-
SAMPLE AREA, A (cm ²)	20.27	18.44				
SAMPLE LENGTH, L (cm)	5.08	4.85				
MOISTURE CONTENT, %	26.0	19.1				
DRY DENSITY (PCF)	104.2	119.7				
HAXIMUM GRADIENT	43.4	43.4				
NET CONFINING PRESSURE (PSI)	5.0	5.0				

COEFFICIENT OF PERMEABILITY, k (cm/sec)

	COEFFICIENT OF FERRE	1012111, K (CM/3EC)	
RUN NO. 1	5.9×10^{-9}		
2	3.1×10^{-9}		
3	6.0 x 10 ⁻⁹		
4.	7.2×10^{-9}		
5	6.6 x 10 ⁻⁹		
6	6.0×10^{-9}		
7	5 9 x 10 ⁻⁹		
8	5.6 x 10 ⁻⁹		
9	5.7 x 10 ⁻⁹		
10			
AVERAGE k, (cm/sec)	5.8 x 10 ⁻⁹		

FORMULA:

$$K = \frac{2.3 \text{ a L}}{\text{At}} \quad \log 10 \quad \frac{\text{ho}}{\text{h1}}$$

Where a = cross-sectional area of standpipe, t = time for water level to fall from initial height, hg, to final height, h₁ (All other terms are defined above)

B parameter for each test was greater than 95 % prior to performing permeability tests $P200 \ Content = 32.5 \%$

Tested by CLS

Checked by Dhl

FLEXBLE WALL FALLING HEAD

PERMEABILITY TEST RESULTS

PROJECT: WAYNE RECLAMATION & RECYCLING

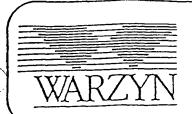
LOCATION: Columbia City, Indiana

JOB NO. 25014610/355				
Date	11/7/94			
Sheet	1 or _1			

WARZYN ENGINEERING INC. - ONE SCIENCE COURT - UNIVERSITY BESEARCH PARK - P.O. HOX 5 HS - M-OSSON, WISCONSIN 53705

SAMPLE	Backfill	#7				
LOCATION	STA. 6+50					
SOIL DESCRIPTION (Visual)	Gray Silty Fine-Mediu Trace Grav	m SAND,			-	
<u> </u>	INITIAL	FINAL	INITIAL	FINAL	INITIAL	FINAL
SAMPLE DIAMETER (cm)	5.08	4.54				-
SAMPLE AREA, A (cm ²)	20.27	16.22				
SAMPLE LENGTH, L (cm)	5.08	4.57				
MOISTURE CONTENT, \$	27.8	22.5				
DRY DENSITY (PCF)	98.8	137.0				
HAXIMUM GRADIENT	46.1	46.1				
NET CONFINING PRESSURE (PSI)	5.0	5.0				

COFFEICIENT OF PERMEARILITY & (cm/coc)


		ERMEABILITI, K (CM/Sec)	
RUN NO. 1	1.3 x 10 ⁻⁸		
2	1.4×10^{-8}		
3	1.3×10^{-8}	,	
4.	1.4 x 10 ^{-8'}		
5	·		
6			·
7			
8			
9 .			
10	·		
AVERAGE k, (cm/sec)	1.3 x 10 ⁻⁸		

FORMULA:

$$K = \frac{2.3 \text{ a L}}{\text{At}} \cdot \log 10 \frac{\text{ho}}{\text{hl}}$$

Where a * cross-sectional area of standpipe. t = time for water level to fall from initial height, ho, to final height, hi (All other terms are defined above)

B parameter for each test was greater than 95 % prior to performing permeability tests. P200 Content: 37.4 %

PROJECT: WAYNE RECLAMATION & RECYCLING

LOCATION: Columbia City, Indiana

Job No. 25014610/355			
Date _	11/23/94		
Sheet_	1	_ of _	l

WARZYN ENGINEERING INC. + ONE SCIENCE COURT + UNIVERSITY BESEARCH PARK + P.O. BOX 5385 + MADISON, WISCONSIN 53705

SAMPLE	Backfill Ma	terial #8				
LOCATION	STA. 4+00					
SOIL DESCRIPTION (Visual)	Gray Silty SAND, Trace (SC-SM)					
	INITIAL	FINAL	INITIAL	FINAL	INITIAL	FINAL
SAMPLE DIAMETER (cm)	5.08	5.08				-
SAMPLE AREA, A (cm²)	20.27	20,27				
SAMPLE LENGTH, L (cm)	5.08	4.39				
MOISTURE CONTENT, \$	20.1	18.4				
DRY DENSITY (PCF)	106.3	116.4				
HAXIMUM GRADIENT	47.9	47.9				
NET CONFINING PRESSURE (PSI)	5.0	5.0				

COEFFICIENT OF PERMEABILITY, k (cm/sec)

RUN NO. 1	7.1 x 10 ⁻⁹		
2	1.0 x 10 ⁻⁸		
3	9.4 x 10 ⁻⁹	. **	
4.	9.4 x 10 ⁻⁹		·
5			
6			
7			
8			
9 .			
10			
AVERAGE k, (cm/sec)	9.0 x 10 ⁻⁹		

FORMULA:

$$K = \frac{2.3 \text{ a L}}{\text{At}} \log 10 \frac{\text{ho}}{\text{hl}}$$

Where a = cross-sectional area of standpipe, t = time for water level to fall from initial height, h₀, to final height, h₁ (All other terms are defined above)

B parameter for each test was greater than 95~% prior to performing permeability tests

P200 Content: 39.3 %

Tested by CLS

Checked by <u>CLS/DM</u>

FLEXIBLE WALL FALLING HEAD PLAFABILITY TEST DESI

PERMEABILITY TEST RESULTS

PROJECT: WAYNE RECLAMATION & RECYCLING

LOCATION: Columbia City, Indiana

Job No	25014610	1
	2/8/95	
Sheet_	1	_ or _1

WARZYN ENGINEERING INC. • ONE SCIENCE COURT • UNIVERSITY RESEARCH PARK • P.O. BOX 5 JUS • MADISON, WISCONSIN 53705

SAMPLE	Backfill Material #9					
LOCATION SOIL DESCRIPTION (Visual)						
	INITIAL	FINAL	INITIAL	FINAL	INITIAL	FINAL
SAMPLE DIAMETER (cm)	5.08	5.08				•
SAMPLE AREA, A (cm ²)	20.27	20.27				
SAMPLE LENGTH, L (cm)	5.08	5.08				
MOISTURE CONTENT, %	17.1	17.1				
DRY DENSITY (PCF)	124.1	124.1				
MAXIMUM GRADIENT	41.5	41.5				
NET CONFINING PRESSURE (PSI)	5.0	5.0				
	COEFFICI	ENT OF PERM	EABILITY, k	(cm/sec)		
RUN NO. 1	2.1 x 10 ⁻⁸		· 			
2	1.9 x 10 ⁻⁸					
3	1.8 x 10 ⁻⁸					
4.	1.8 × 10	8				··
5						·
Total Control of the						
_	1		t		1	

FORMULA:

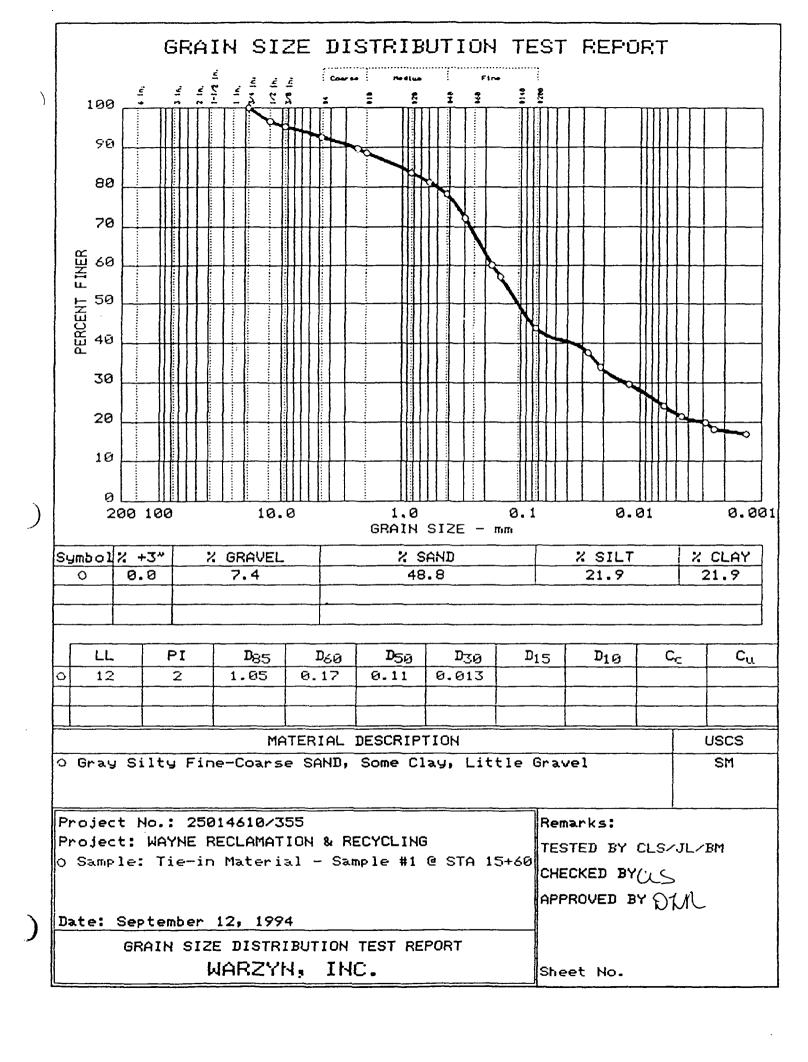
$$K = \frac{2.3 \text{ a L}}{\text{At}} \log 10 \frac{\text{ho}}{\text{hl}}$$

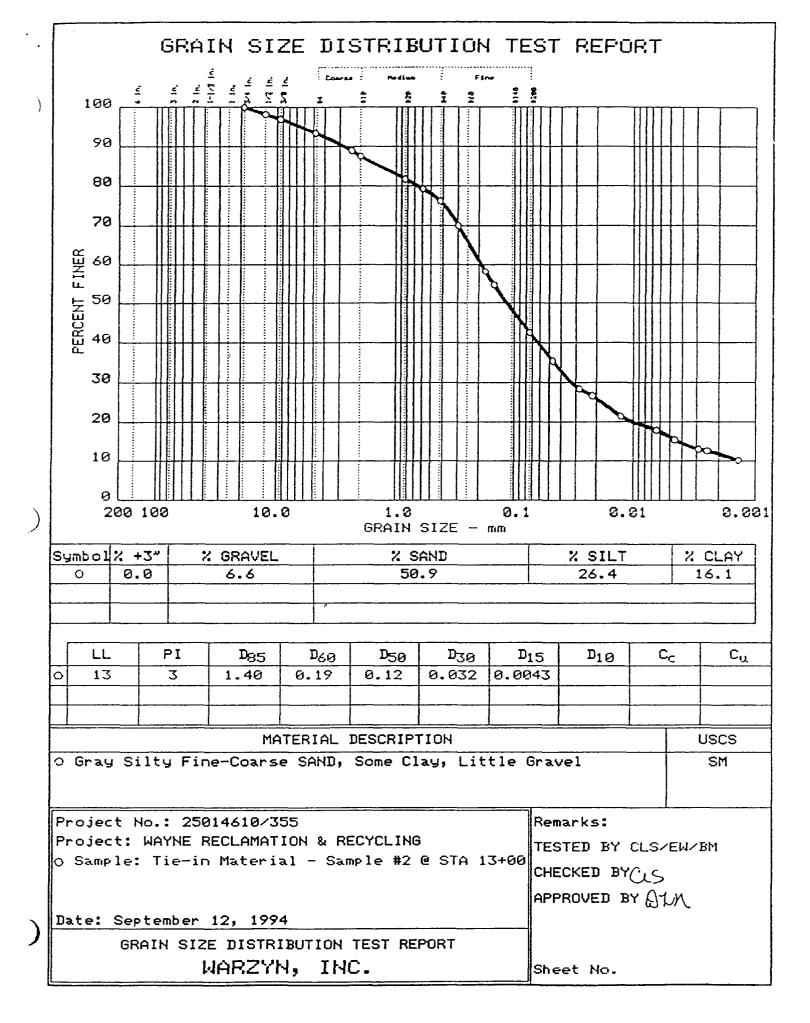
7 8 9

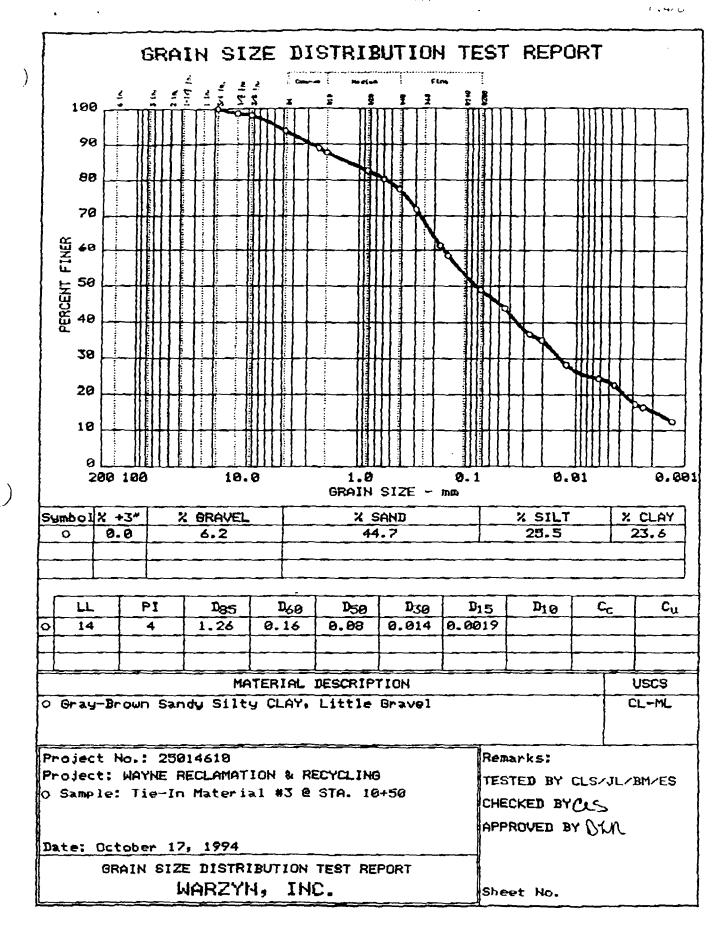
10

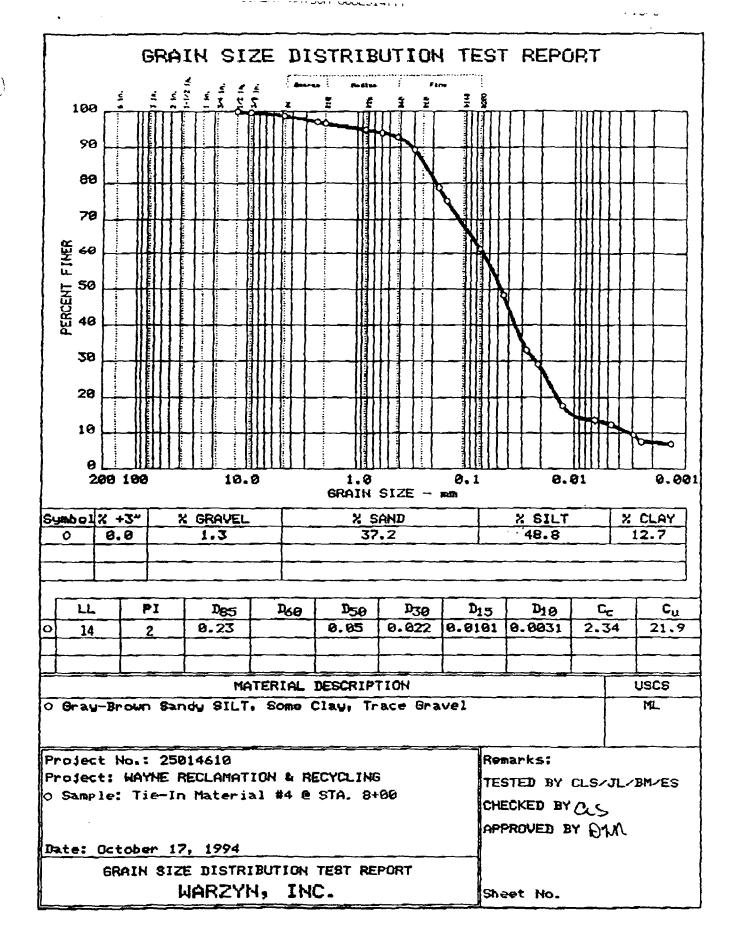
AVERAGE k, (cm/sec)

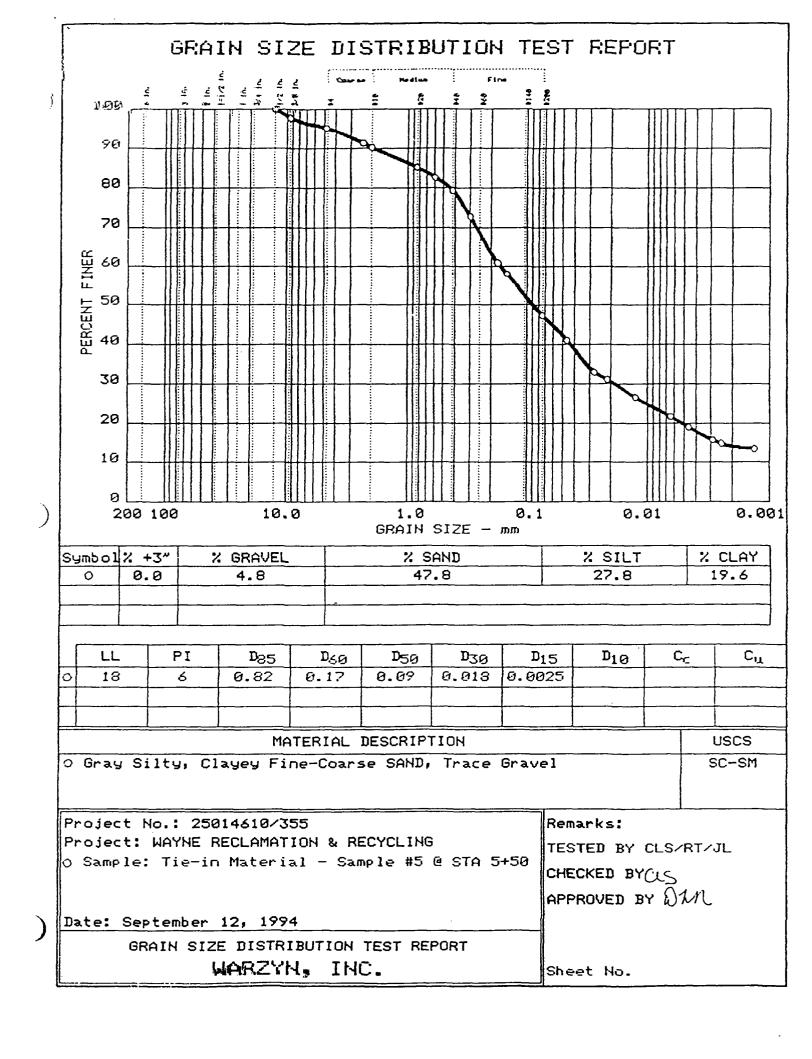
 1.90×10^{-8}

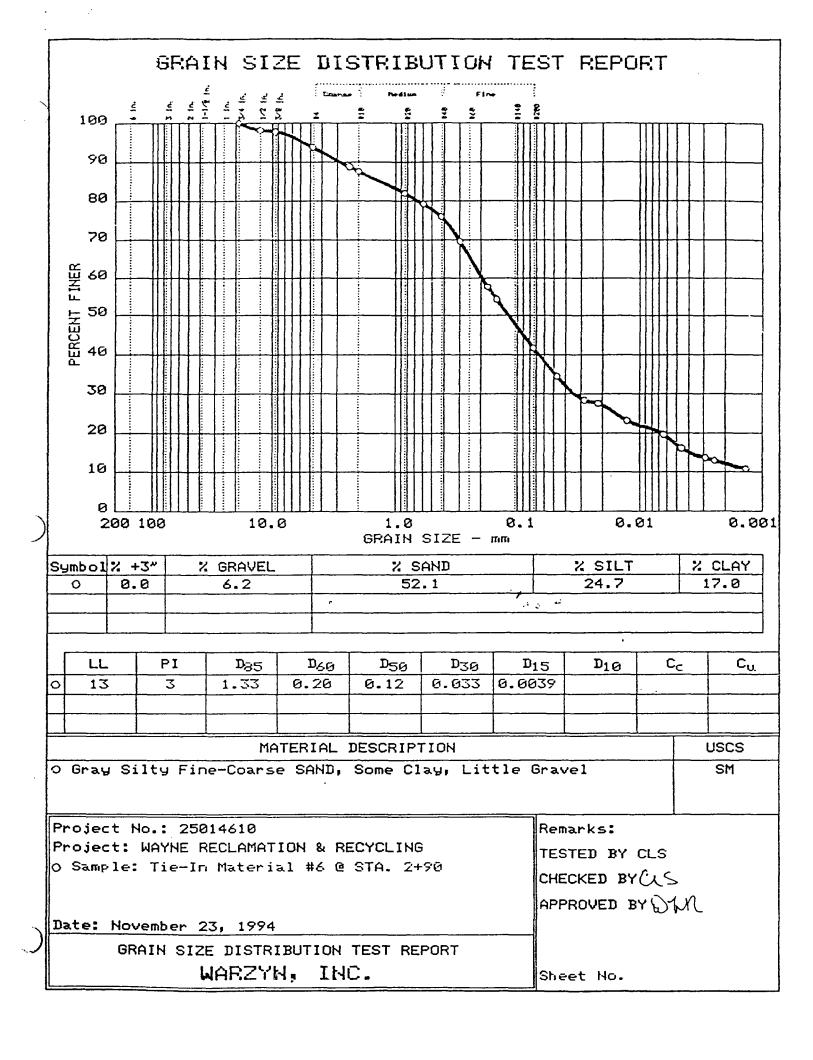

Where a = cross-sectional area of standpipe, t = time for water level to fall from initial height, h₀, to final height, h₁ (All other terms are defined above)

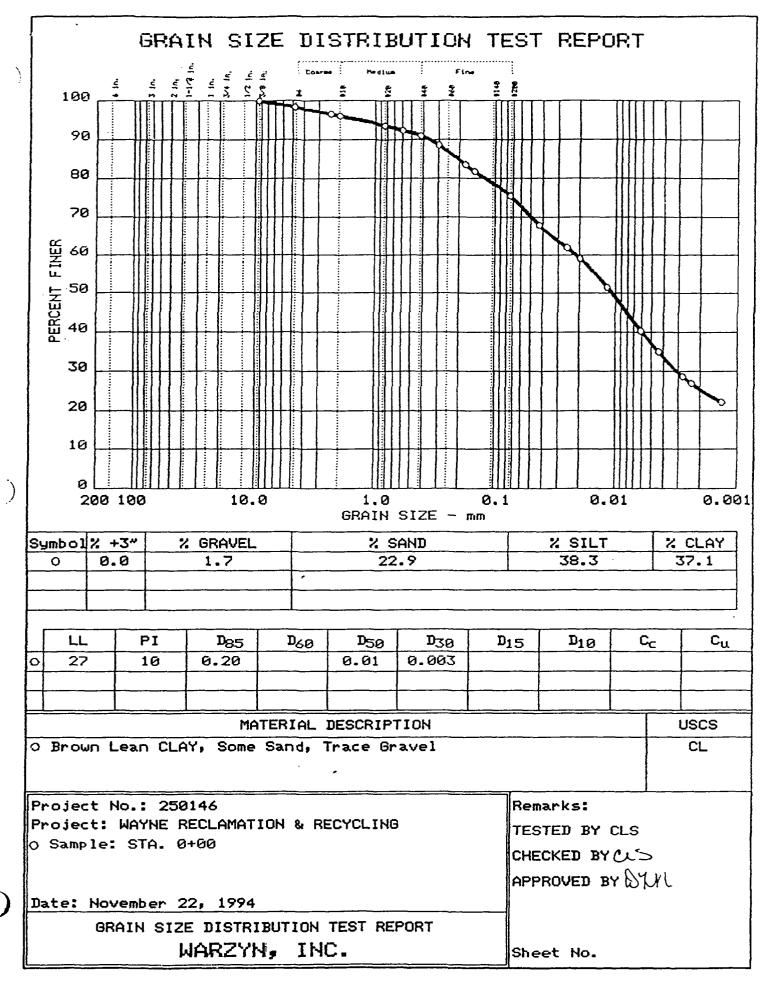

B parameter for each test was greater than 95'% prior to performing permeability tests. P200 Content = 31.3 %


Checked by CLS/DAN


A2


TIE-IN MATERIAL SAMPLES





A3

CLAY CAP MATERIAL SAMPLES

is

FALLING HEAD FERMEABILITY TEST Montgonery Natson, One Science Court, Madison, NI 53711 Phone: (608)231-6955 or 231-4747

PROJECT WAYNE RECLAMATION & RECYCLING LOCATION Columbia City, Indiana

SAMPLE STA. 0+00

DEPTH (ft)

SOIL DESCRIPTION Brown Lean CLAY, Some Sand, Trace Gravel (CL)

SAMPLE DIAMETER (cm) 7.4 SAMPLE AREA, A(cm²) 42.6

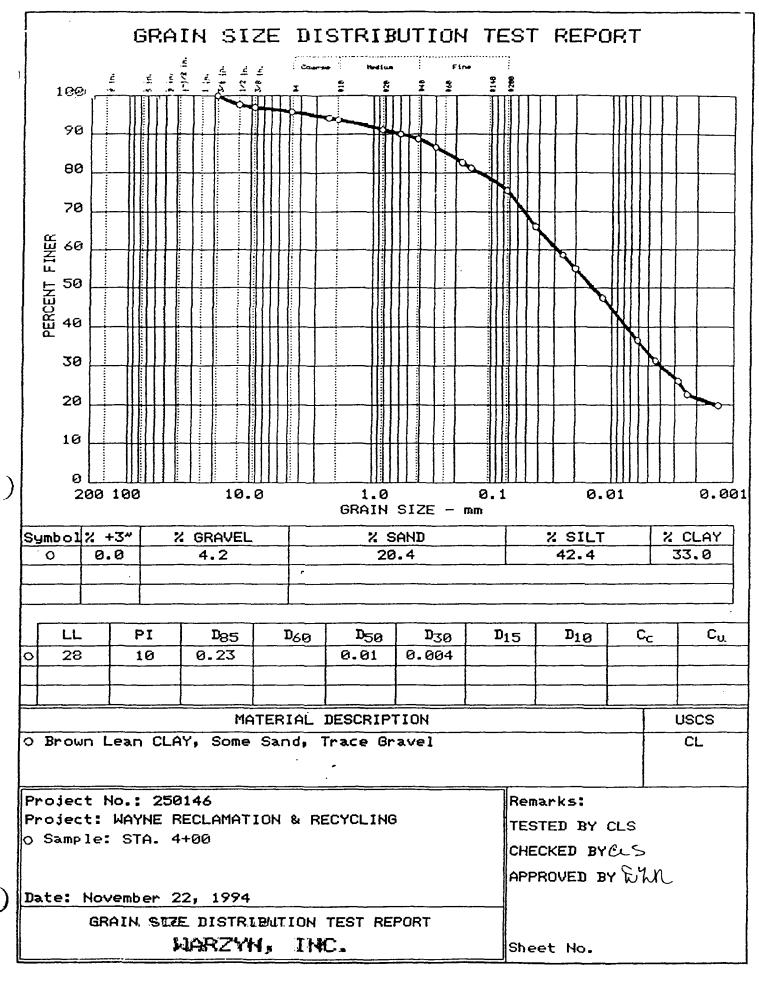
SAMPLE LENGTH,L(cm) 14.1 14.0 MOISTURE CONTENT,% 13.4 17.8 DRY DENSITY (lb/cu ft) 108.6 109.2 PERCENT COMPACTION -

COEFFICIENT OF RUN PERMEABILITY, k(cm/sec)

1	9.5E-08
2	8.8E-08
3	8.9E-08
4	7.5E-08
5	8.9E-08
6 ်	8.1E-08
7	6.3E-08
8	6.9E-08
9	6.6E-08
10	6.2E-08

AVERAGE COEFFICIENT OF PERMEABILITY = 6.6E-08 cm/sec (Based on run numbers 8 through 10)

2.3al he


FORMULA: k = ---- logie -- , Where a = cross-sectional area of standpipe,

At hi t = time for water level to fall from initial height, he, to final height, hi

(All other terms are defined above)

REMARKS: This permeability test was performed on a relatively undisturbed 3-inch diameter Shelby tube sample.

CHECKED BY: CLS DATE: 11-22-94 APPROVED BY: DYM DATE: 11-22-94

ż

FALLING HEAD FERMEABILITY TEST Bontgonery Watson, One Science Court, Madison, W1 53711 Phone: (608)231-6955 or 231-4747

PROJECT WAYNE RECLAMATION & RECYCLING LOCATION Columbia City, Indiana

SAMPLE STA. 4+00

DEPTH (ft)

SOIL DESCRIPTION Brown Lean CLAY, Some Sand, Trace Gravel (CL)

SAMPLE DIAMETER (cm) 7.4 SAMPLE AREA, A(cm²) 42.6

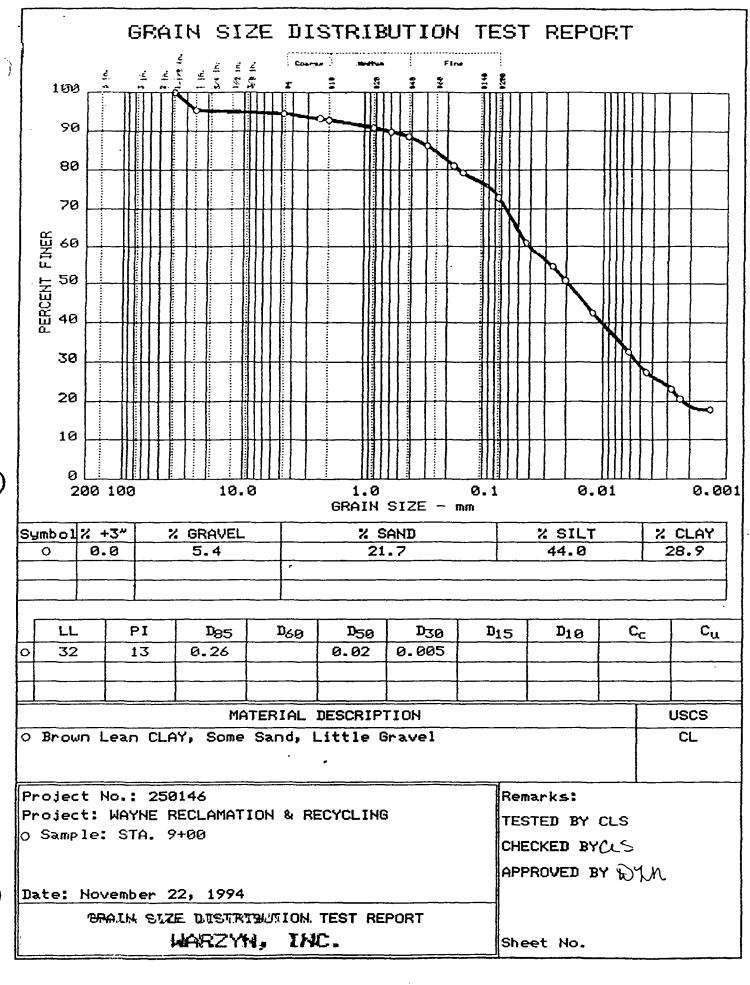
	_INITIAL	FINAL
SAMPLE LENGTH, L(cm)	10.9	10.8
MOISTURE CONTENT,%	13.1	15.7
DRY DENSITY (lb/cu ft)	112.2	113.0
PERCENT COMPACTION	-	-

COEFFICIENT OF RUN PERMEABILITY, k(cm/sec)

6.3E-08
5.5E-08
5.7E-08
5.5E-08
5.8E-08
5.5E-08
5.1E-08
5.4E-08
5.4E-08
5.4E-08

AVERAGE COEFFICIENT OF PERMEABILITY = 5.4E-08 cm/sec (Based on run numbers 8 through 10)

2.3ab he


FORMULA: k = ---- logie -- , Where a = cross-sectional area of standpipe,

At hi t = time for water level to fall from initial height, he, to final height, hi

(All other terms are defined above)

REMARKS: This permeability test was performed on a relatively undisturbed 3-inch diameter Shelby tube sample.

CHECKED BY: CLS DATE: 11-22-94 APPROVED BY: DYM DATE: 11-22-94

FALLING HEAD FERMEABILITY TEST Montgonery Natson, One Science Court, Madison, NI 53711 Phone: (608)231-6955 or 231-4747

PERCENT COMPACTION

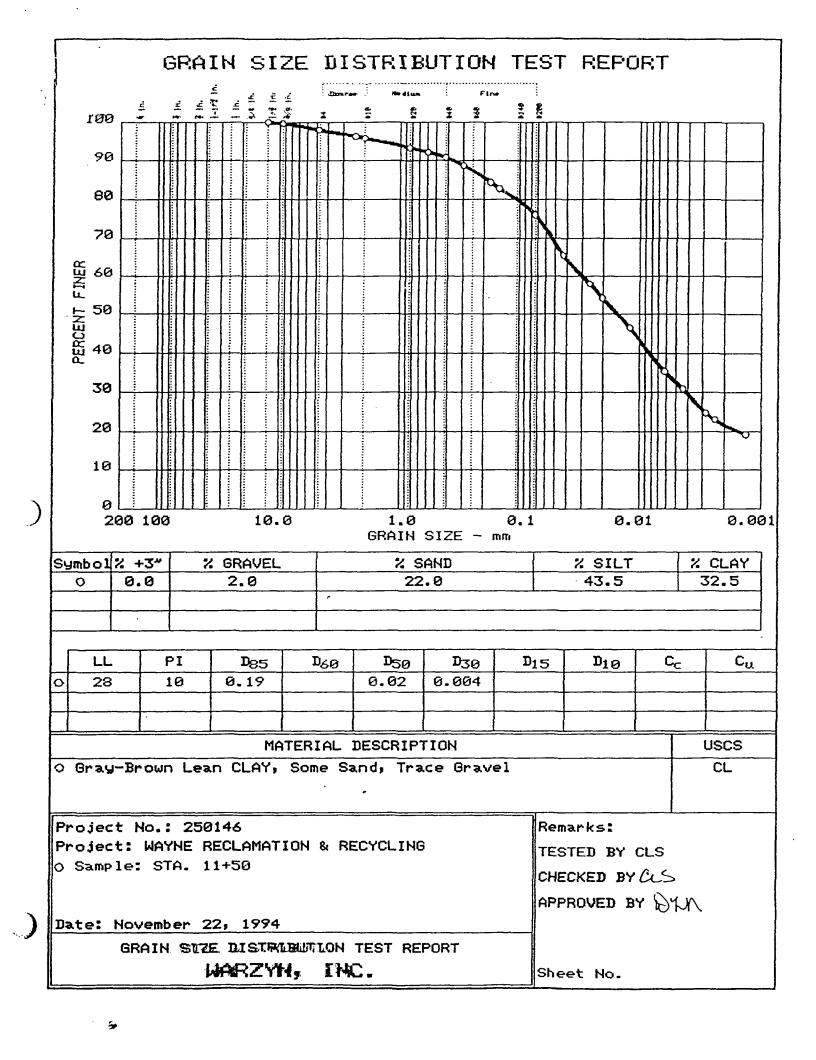
PROJECT WAYNE RECLAMATION & RECYCLING LOCATION Columbia City, Indiana STA. 9+00 SAMPLE DEPTH (ft) Brown Lean CLAY, Some Sand, Little Gravel SOIL DESCRIPTION (CL) SAMPLE DIAMETER (cm) 7.4 SAMPLE AREA, A(cm²) 42.6 INITIAL FINAL SAMPLE LENGTH, L(cm) 18.2 18.2 MOISTURE CONTENT,% 13.4 18.2 DRY DENSITY (1b/cu ft) 108.8 109.2

COEFFICIENT OF RUN PERMEABILITY.k(cm/sec)

6.3E-07 2 3.8E-07 3 1.5E-07 1.0E-07 5 9.5E-08 6 8.9E-08 7 9.0E-08 8.1E-08 8 6.7E-08 9 6.5E-08 10

AVERAGE COEFFICIENT OF PERMEABILITY = 7.1E-08 cm/sec (Based on run numbers 8 through 10)

2.3ab he


FORMULA: h = ---- logis -- , Where a = cross-sectional area of standpipe,

At hi t = time for water level to fall from initial height, he, to final height, hi

(All other terms are defined above)

REMARKS: This permeability test was performed on a relatively undisturbed 3-inch diameter Shelby tube sample.

CHECKED BY: CLS DATE: 11-22-C

FALLING HEAD PERMEABILITY TEST Montgomery Natson, One Science Court, Madison, NI 53711 Phone: (608)231-6955 or 231-4747

PROJECT WAYNE RECLAMATION & RECYCLING LOCATION Columbia City, Indiana

SAMPLE STA. 11+50

DEPTH (ft)

ì

SOIL DESCRIPTION Gray-Brown Lean CLAY, Some Sand, Trace Gravel (CL)

SAMPLE DIAMETER (cm) 7.4 SAMPLE AREA, A(cm²) 42.6

SAMPLE LENGTH, L(cm) 17.9 17.8 MOISTURE CONTENT, % 13.5 14.1 DRY DENSITY (lb/cu ft) 117.7 118.2 PERCENT COMPACTION -

COEFFICIENT OF RUN PERMEABILITY, k(cm/sec)

1	5.6E-08
2	4.2E-08
3	3.9E-08
4	2.9E-08
5	2.3E-08
6	2.3E-08
7	2.4E-08
8	2.4E-08
9	2.3E-08
10	3.0E-08

AVERAGE COEFFICIENT OF PERMEABILITY = 2.6E-08 cm/sec (Based on run numbers 8 through 10)

2.3al he

FORMULA: k = ---- logie -- , Where a = cross-sectional area of standpipe,

At hi t = time for water level to fall from initial height, he, to final height, hi

(All other terms are defined above)

REMARKS: This permeability test was performed on a relatively undisturbed 3-inch diameter Shelby tube sample.

CHECKED BY: CLS DATE: 11-22-4 APPROVED BY: DYN DATE: 11-22-4

В

PHOTOGRAPHIC DOCUMENTATION

B1

GROUNDWATER EXTRACTION SYSTEM

Photo #1:

Hollow Stem Auger Drill Rig

Photo #2: Stainless steel well screen attached to PVC riser used in construction of groundwater extraction wells.

Photo #3:

Finished Groundwater Extraction Well (typical)

Photo #4:

Leak detection view port installed on untreated groundwater piping outside cut-off wall.

Photo #5: Working bench area prepared for excavation to cut-off wall.

Photo #6: Powdered bentonite to be mixed with imported clay and native soils during construction of cut-off wall.

Mixing clay and soil during backfill of cut-off wall. Photo #7:

Excavation of cut-off wall. Photo #8:

Photo #9:

Construction of clay cap above cut-off wall.

GROUNDWATER TREATMENT SYSTEM

Photo #1:

Untreated Groundwater Influent Holding Tank

Photo #2:

Anti-Scalant Metering Pump

Photo #3:

Bag Filter

Photo #4:

Installation of air stripping tower.

Photo #5: Air stripping tower cleaning tank and pump (foreground). Base of air stripping tower (background).

Photo #6:

Top of air stripping tower.

Photo #7:

Influent Transfer Pumps

Photo #8:

Effluent Transfer Pumps

Photo #9: Fusing high density polyethylene (HDPE) piping for force main

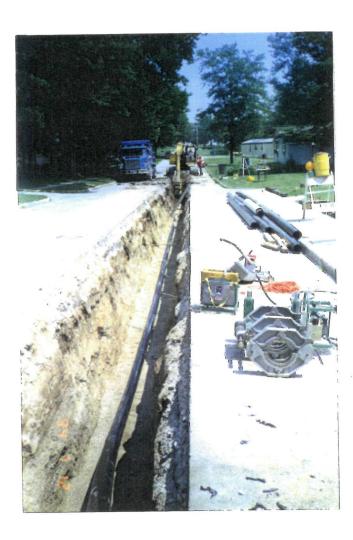


Photo #10: Installation of HDPE piping along force main route.

Photo #11: Compacting backfill above force main piping.

Photo #12: Bore and jack of force main piping beneath railroad line.

Photo #13: Installation of force main piping into outer casing beneath railroad line.

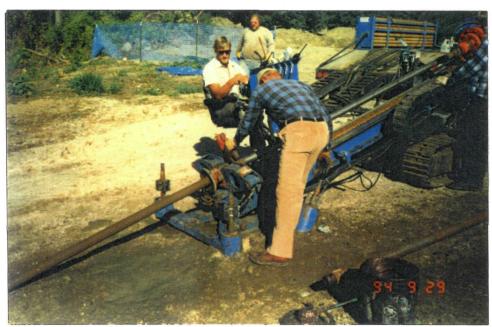


Photo #14: Directional drilling equipment used to advance the force main beneath the two Blue River crossings.

Photo #15: Tap in of force main at WWTP's grit chamber. Above ground piping is heat traced and insulated.

Photo #16: Tap in of force main at WWTP's grit chamber. Metal jacket installed around heat trace and insulation.

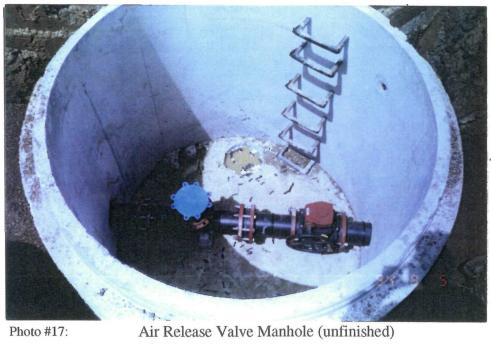


Photo #17:

Photo #18:

Paving roadways along force main route.

Photo #19:

Construction of leak detection manhole.

SOIL VAPOR EXTRACTION & AIR SPARGING SYSTEMS

Photo #1: Completed soil vapor extraction / air sparging well nest (typical).

Photo #2: Soil vapor extraction and air sparging piping in southeast area.

Photo #3:

Soil vapor extraction piping in AST area.

Photo #4:

Air Sparging Air Compressor

Photo #5:

Control valve box in southeast area (typical).

Photo #6:

Soil vapor extraction and air sparge control valve in control valve box (typical).

B4

OFF-GAS TREATMENT SYSTEM

Photo #1:

Air Filter

Photo #2:

Moisture Separator (foreground) Air Filter (background)

Photo #3:

Blowers

Photo #4:

Heat Exchanger

Photo #5:

Regenerative Adsorbent System



Photo #6:

Regenerative Adsorbent System

Photo #7:

Installation of air discharge stack.

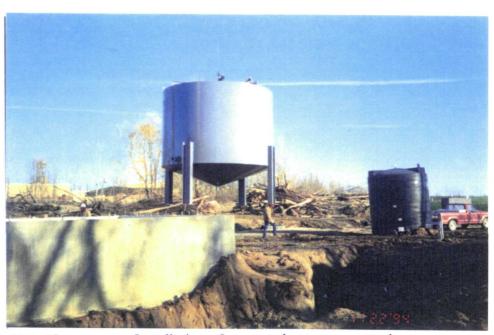


Photo #8:

Installation of waste solvent storage tank.

INSTRUMENTATION & CONTROLS

Photo #1: Main menu of software that controls WRR treatment system.

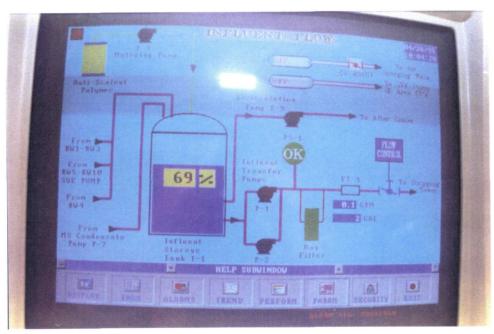


Photo #2: Software screen showing status of water level in influent storage tank.

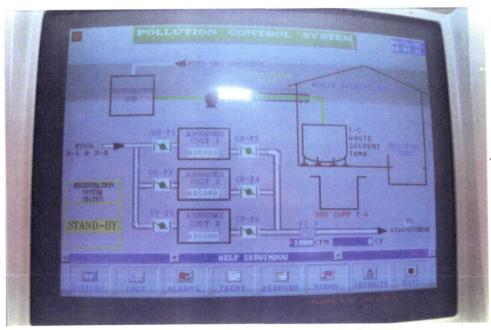


Photo #3: Software screen showing status of PADRE unit.

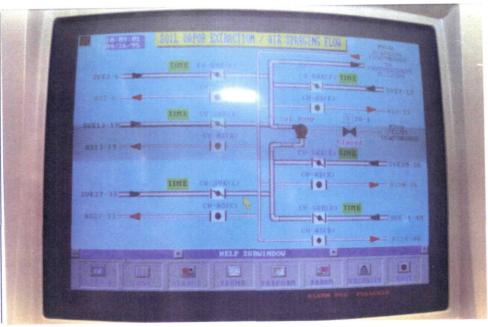


Photo #4: Software screen showing status control valves on SVE and AS lines in SE area.



Photo #5:

Software screen alarm status.

TREATMENT BUILDING & WASTE SOLVENT BUILDING

Photo #1: Wooden forms used during construction of treatment building foundation.

Photo #2: Pretreatment building foundation wall.

Photo #3: Electrical conduits installed below pretreatment building floor.

Photo #4: Soil vapor extraction piping stubbed up in pretreatment building.

Photo #5:

Pouring pretreatment building floor.

Photo #6:

Waste solvent building foundation excavation.

Photo #7: Waste slovent building foundation and wall reinforcing.

Photo #8:

Constructing pretreatment building frame.

Photo #9:

Constructing pretreatment building siding.

Photo #10:

Constructing office within pretreatment building.

Photo #11:

Septic tank outside of pretreatment building.

Photo #12: Completed waste solvent and pretreatment buildings.

\mathbf{C}

FORCE MAIN COMPACTION RESULTS (IN CHRONOLOGICAL ORDER)

MIT JOB # 94-200/Y	
PROJECT WAYNE RECLAMATIO	N SITE
CLIENT YOUNGS ENVIRONME	
CLIENT JOB #	
DATE 7-8-94 PAGE 1	OF 2

PONE (219) 489-1567 - 3807 GOSHEN ROAD - FORT WAYNE, INDIANA 46818

		SOILS INSP				
WEATHE	R PARTLY CLOUDY	DAILY REPORT	FORM _ TEMP. RANGE 85	° то <u>90</u>	<u> </u>	
CONTRA	CTOR YOUNGS ENVIR	RONMENTAL ARE				REF
TYPE OF	CLAY COAH REBORROW SAHO		PNEUMATIC TAMP. SHEEPSFOOT RUBBER TIRED	VIB. 5	TESTS 1,4,5	5,6
THICKNE	SS OF LIFTS 8-10	INCHES				
PLANNE	D DEPTH OF FILL YAR	TIES FT. PLACED	TO DATE VARIES	FT.		
DENSITY	•			· . ·	9.8 *	Ę
		LOCATIONS AND RESUL	TS OF TESTS			
TEST NO.	LO	CATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT	
1 *	STATION 14+50 (0.0"±	6.4	93.8	
2	STATION 13+75		0.0"±	8.1	95.8] ,
3	STATION 13+25X		0.0"±	6.5	97.1	
4 *	STATION 14+50 7		2.0'±	11.3	87.1	ءر
5 ×	STATION 13+75 +		2.5'±	11.7	88.2	
6 *	STATION 13+25X		2.0'±	12.4	89.3	
7	STATION 15+00 X		3.0'±	8.2	95.2	
8	STATION 15+25		3.0'±	8.0	95.0 _	

REMARKS:

3.0'±

The state of the s

^{*} AREA DID NOT ACHIEVE REQUIRED DENSITY. SUPT. AWARE OF LOW RESULT TEST AREAS.

PROJECT WAYNE RECLAMATION							
CLIENT YOUNGS ENVIRONMENTAL							
CLIENT JOB #						_	
DATE	7-	3-94	PAGE	2	OF	_2	

PHONE (219) 489-1567 • 3807 GOSHEN ROAD • FORT WAYNE, INDIANA 46818

SOILS INSPECTION								
	DAILY REPORT FORM							
WEATHER PARTLY CLOUDY TEMP. RANGE 85 ° TO 90 °								
CONTRACTOR	YOUNGS ENV	IRONMENTAL A	REA WORKED TRENCH B	ACKFILL - WHITLEY STREE				
TYPE OF FIL	L _ SAND	METHOD OF COMPACTIO	ON 🛮 VIBRATORY PLATE	STEEL WHEEL				
	CLAY		PNEUMATIC TAMP.					
	LOAM		SHEEPSFOOT					
TYPE OF	B-BORROW	CONDITION OF GRADE	AUBBER TIRED					
TYPE OF SUBGRADE	CLAY	CONDITION OF GRADE	ROUGH SMOOTH	FROZEN LOOSE				
JOBORADE	LOAM		[] WET	HARD				
			DRY	RUTTED				
THICKNESS OF	F LIFTS 8-10_	_ INCHES						
PLANNED DE	PTH OF FILL YA	RIES FT. PLACED	TO DATE VARIES	FT.				
MAX. DENSITY OF MATERIAL MODIFIED AASHO T-180 XXX STANDARD AASHO T-99								
DENSITY REQUIRED 95 % METHOD OF TEST SAND CONE								
	S THIS DATE		BALLOON					
NO. OF TEST	S TO DATE		∠ NUCLEAR D	ENSITY				
								

TEST HO.	LOCATION '	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION
9	STATION 15+25 /	4.5'±	8.3	95.5
10	STATION 15+00 x	4'10" ±	7.9	95.1
11	STATION 15+10 χ	4.0'±	8.1	96.2
12	STATION 15+00 X	3.0'±	7.3	95.0
13	STATION 15+25	3.0'±	7.1	95.3
14	STATION 15+00 Y	1.0'±	6.9	95.2
15	STATION 15+25 /	1.0'±	7.0	96.0

REMARKS:

MIT JOB #	94-200/Y
	WAYNE RECLAMATION SITE
CLIENT	YOUNGS ENVIRONMENTAL
CLIENT JOB #	
DATE	7-11-94

YONE (219) 489-1567 • 3807 GOSHEN ROAD • FORT WAYNE, INDIANA 46818

	SOILS INSPE	ECTION				
	DAILY REPORT	FORM				
WEATHE	CLEAR	TEMP. RANGE 60	_° то <u>80</u>	<u> </u>		
CONTRAC	TOR YOUNGS ENVIRONMENTAL ARE	A WORKED TRENCH	BACKFILL	- WHITLEY STR		
TYPE OF	FILL SAND METHOD OF COMPACTION CLAY LOAM B-BORROW	VIBRATORY PLATE PNEUMATIC TAMP. SHEEPSFOOT RUBBER TIRED	VI8. \$1	TEEL WHEEL		
TYPE OF	SAND CONDITION OF GRADE (SE CLAY LOAM	ROUGH SMOOTH WET DRY	FROZE			
	SS OF LIFTS 8-10 INCHES DEPTH OF FILL VARIES FT. PLACED T	O CATE VARIES				
	ISITY OF MATERIAL XXX MODIFIED AASHO T-180 119			9.8 .		
DENSITY REQUIRED 95 % METHOD OF TEST SAND CONE NO. OF TESTS THIS DATE 6 BALLOON NO. OF TESTS TO DATE						
	LOCATIONS AND RESUL	TS OF TESTS				
TEST NO.	LOCATION	DEPTH BELOW FINISHED GRAD"	PERCENT MOISTURE	PERCENT COMPACTION		
1	STATION 15+75	4.50"±	8.3	95.2		
2	STATION 15+85 +	4.50"±	8.6	96.1		
3	STATION 15+75	2 83"+	0 1	95.0		

2.83"±

1.0"±

1.0"±

7.9

8.5

8.4

REMARKS:

4

5

STATION 15+85 †

STATION 15+75 X

STATION 15+85 †

95.4

95.7

96.0

. JOB #	
PROJECT	Dilgni fiellandin
CLIENT	
CLIENT JOB #	
DATE	7.17.94

ONE (219) 489-1567 • 3807 GOSHEN ROAD • FORT WAYNE, INDIANA 46818

	SOILS INSPECTION								
	DAILY REPORT FORM								
	WEATHER Slump	TEMP. RANGE δυ	_° то _5 °						
	CONTRACTOR YELLS LYC.	AREA WORKED [11],14	by st. french						
	TYPE OF FILL SAND METHOD OF COMPACT	ION D VIBRATORY PLATE	STEEL WHEEL						
	CLAY	PHEUMATIC TAMP.	VIB. STEEL WHEEL						
	LOAM A	SHEEPSFOOT	VIB. PNEUMATIC						
	J. B. Bon	RUBBER TIRED	<u> </u>						
	TYPE OF SAND CONDITION OF GRADE		FROZEN						
	SUBGRADE CLAY	SMOOTH	LOOSE						
	LOAM	WET	HARD						
	<u> </u>	ORY	RUTTED						
	THICKNESS OF LIFTS								
	PLANNED DEPTH OF FILL MILLE FT. PLACE	ED TO DATE VALLES	FT.						
	MAX. DENSITY OF MATERIAL MODIFIED AASHO T-180	119.7 #/CU. FT. OPTIM	UM MOISTURE 7 5						
)	DENSITY REQUIRED 95 % 9 METHOD (OF TEST SAND CONE							
	NO. OF TESTS TO DATE	J Wike-							
	LOCATIONS AND RE	SULTS OF TESTS							
- 1			DEDCENT DEDCENT						

TEST NO.	LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION
(16.450 4	3'.6"	8.1	75.1
.?	16+55 +	3'. 2	85	95.5
.3	16150 x	1:6"	1.9	952
4	16+55+	1'6"	8.2	754
5	17+25 +	3'6"	18	91.5
6	17+25 +	1'.0"	7.5	94.0
7	18:+00 1	4'.0'	7.7	95.3
8	18+00	2'.10"	8.0	95.6
G REMARKS:	18+00 t	1.0"	17.8	(95:1

MIT JOB # .	
PROJECT	Wayne proclanation
CLIENT	
CLIENT JOB #	
DATE	7.13.94

THONE (219) 489-1567 • 3807 GOSHEN ROAD • FORT WAYNE, INDIANA 46818

SOILS INSPECTION									
DAILY REPORT FORM									
-	WEATHER SURRY TEMP. RANGE 80 ° TO 85 °								
CONTRAC	CONTRACTOR Young exa AREA WORKED Collins St. French								
TYPE OF	TYPE OF FILL SAND METHOD OF COMPACTION VIBRATORY PLATE STEEL WHEEL CLAY PNEUMATIC TAMP. VIB. STEEL WHEEL SHEEPSFOOT VIB. PNEUMATIC RUBBER TIRED TYPE OF SAND CONDITION OF GRADE ROUGH FROZEN SUBGRADE CLAY SMOOTH LOOSE LOAM PET HARD RUTTED								
	ss of LIFTS			. / .					
PLANNED	DEPTH OF FIL	Maries	FT. PLACED	TO DATE Lines	FΤ.				
MAX. DEN	ISITY OF MATE	RIAL MODIFIED	AASHO T-180]	19.7 #/CU. FT. OPTII	NUM MOISTURE	98.			
NO. OF T		re		TEST SAND CONE BALLOON NUKE					
		LOCATIO	NS AND RESU	LTS OF TESTS					
TEST NO.		LOCATION		DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION			
1	Station	18 t 75	1	3'-6"	76	95.4			
2	• •	18 +75	+	2'.10"	14	95.0			
3	V	19 + 50	4	4' 6"	79	951			
4	1.7	19+50	<i>X</i>	3'.2"	73	955			
5	U	18+75	<i>Y</i>	.6"	75	95.3			
6	11	19+50	+	1.'5"	10	95.1			
7		201 25		3'- 6"	79	95.6			
8	61	20125	. /	2:0"	8 2	96.1			
REMARKS		20+25		.6"	80	95.3			

⊬∷ JOB # _	
PROJECT_	Wagne proclamation
CLIENT _	· · · · · · · · · · · · · · · · · · ·
CLIENT JOB # _	
DATE	7.15.77

YONE (219) 489-1567 • 3807 GOSHEN ROAD • FORT WAYNE, INDIANA 46818

SOILS INSPECTION						
C DAILY REPORT FORM						
WEATHER	CONTRACTOR YOUNGS exc. AREA WORKED Witley of French					
	1/		1-1-1	4	1 ()	
CONTRAC	TORYOUR	AR	EA WORKED LILL	ley so	Trench	
TYPE OF	FILL SAND	METHOD OF COMPACTION				
TTPE OF	CLAY	METHOD OF COMPACTION	VIBRATORY PLATE	=_	. WHEEL TEEL WHEEL	
			SHEEPSFOOT		NEUMATIC	
	BB-B	own	RUBBER TIRED	<u> </u>		
TYPE OF	SAND	CONDITION OF GRADE			EN	
SUBGRAD	E DELAY		SMOOTH	LOOSE		
	LOAM		WET	HARD		
	<u> </u>		DRY	RUTTE	D	
T1110111	SS OF LIFTS 2-1	6" mayer				
		. ,	•			
PLANNEC	DEPTH OF FILL	Varies FT. PLACED	TO DATE Vorie	₫ FT.		
MAY DEN	ISITY OF MATER	IAI TO MODIFIED AARNO TARA	V 0 3		00	
MAX. DEN	ISITI OF MATER	AL MODIFIED AASHO T-180 STANDARD AASHO T-99	19. / #/CU. FT. OPTI	MUM MOISTURE	<u>4.8</u>	
	Or on	—				
DENSITY	PEQUIRED -7	% METHOD OF	TEST _ SAND CONE			
NO. OF TESTS THIS DATE BALLOON						
NO OF TESTS TO DATE						
		LOCATIONS AND RESU	LTS OF TESTS			
7817 00		LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION	
1	Station	14450 Y	2'-6"	9.5	95.2	
2	Lį	13175 +	3.00	9.1	95.5	
3	и	13+25 /	2'-6"	8.8	95.0	
-					-	
			}			
L	<u> </u>			l	<u> </u>	
RFUARES	* *1 · -	1. 1. 1. 1.	and O	1 -1	1 . ,	
These areas lested had previously failed 15: 44						

FORM 106

1072077224 10-64441

MATERIALS INSPECTION 8 TESTING, INC.

MIT JOB #	94-200/Y
	WAYNE RECLAMATION SITE
CLIENT	YOUNGS ENVIRONMENTAL
CLIENT JOB #	
	7-15-0/

_	VC (218) 4034	1567 - 3807 GOSHEN 7	DAD • FORT WAYNE, INDIANA 4	6818 DATE.	7-15-		
			SOILS INS	PECTION			
	DAILY REPORT FORM						
	WEATHER OVERCAST TEMP. RANGE 75 ° TO 80 °						
CONTRACTOR YOUNGS ENVIRONMENTAL AREA WORKED COESSE ST. TRENCH						Ħ	
	CONTRACTOR AREA WORKED COLSSE SI. IRENUE						
	TYPE OF	FILL .SAND	METHOD OF COMPACTION			MHEEL	
		CLAY		PHEUMATIC TAMP.		BEL WHEEL	
		B-BORROV	I	SHEEPSFOOT RUBBER TIRED	☐ VIB. P	EUMATIC	
	TYPE OF	~	CONDITION OF GRADE		PROZE	N	
	SUBGRAD	=: .	•	Б змоотн	LOOSE		
		LOAM		WET	HARD		
				☐ DRY	RUTTE	D	
	THICKNE	SS OF LIFTS 12-16	LINCHES				
			A D T TO				
	PLANNE	DEPTH OF FILL 1	ARIES FT. PLACE	D TO DATE VARIES	FТ.		
	MAX. DEN	ISITY OF MATERIAL	MODIFIED AASHO TAIN	7		• •	
			MODIFIED AASHO T-180	119./ #/CU. PT. OPTIN	IUM MOISTURE	9.8	
		REQUIRED LESTS THIS DATE .	METHOD C	BALLOON			
		TESTS TO: DATE			LEAR DENSITY		
				y2			
			LOCATIONS AND RE	SULTS OF TESTS			
	TEST NO.		LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION	
	1	STATION 24+00		4'6"	7.9	95.8	
	2	STATION 24+00		314"	7.4	97.3	
	3	STATION 24+00		2'5"	7.7	95.6	
	4	STATION 24+00		1'6"	7.3	96.1	
						73	
		<u> </u>					
1		<u> </u>				<u> </u>	
		L			<u> </u>	l	
	REMARKS:						
		;					
		 			••		
_			!			·	

MIT JOB #	94-200/Y	
PROJECT	WAYNE RECLAMATION S	ITE
CLIENT	YOUNGS ENVIRONMENTAL	L
DATE	7-18-94	

ONE (219) 489-1567 - 3807 GOSHEN ROAD - FORT WAYNE, INDIANA 46818

SOILS INSPECTION					
DAILY REPORT FORM					
WEATHER CLEAR	TEMP. RANGE 75 ° TO 80 °				
CONTRACTOR YOUNGS ENVIRONMENTAL	AREA WORKEDSWIHART STREET TRENCH				
TYPE OF FILL SAND METHOD OF CON CLAY LOAM R-BORROW TYPE OF SAND CONDITION OF GOOD SUBGRADE CLAY LOAM LOAM LOAM	APACTION VIBRATORY PLATE STEEL WHEEL PNEUMATIC TAMP. VIB. STEEL WHEEL SHEEPSFOOT VIB. PNEUMATIC RUBBER TIRED FROZEN SRADE ROUGH FROZEN SMOOTH LOOSE WET HARD DRY RUTTED				
THICKNESS OF LIFTS 12-14 INCHES					
PLANNED DEPTH OF FILL VARIES FT.	PLACED TO DATE VARIES FT.				
MAX. DENSITY OF MATERIAL 🔲 MODIFIED AASHO	7 T-180 119.7 #/CU. FT. OPTIMUM MOISTURE 9.8				
DENSITY REQUIRED 95 . % MET NO. OF TESTS THIS DATE 9	THOD OF TEST SAND CONE BALLOON NUCLEAR DENSITY				

LOCATIONS AND RESULTS OF TESTS					
TEST NO.	LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION	
1	STATION 24+35	4'0"	9.4	95.2	
2	STATION 24+80	4'6"	8.9	95.8	
3	STATION 25+25	4'0"	9.5	95.4	
4	STATION 24+40	3'0"	8.7	95.3	
5	STATION 25+20	3'0"	7.9	95.3	
6	STATION 24+75	2'0"	8.5	95.1	
7	STATION 25+25	2'0"	9.0	95.7	
8	STATION 25+30	1'0"	8.8	95.6	
_	COLUMN 2/170	1.1011.	^ ^	24.2	

9 STATION 24+70 1'0"± 8.3 96.3 REMARKS:

MIT JOB # 94-200/Y

PROJECT WAYNE RECLAMATION SITE

CLIENT YOUNGS ENVIRONMENTAL

CLIENT JOB #

DATE 7-14-94

PHONE (219) 489-1567 - 3807 GOSHEN ROAD - FORT WAYNE, INDIANA 46818

SOILS INSPECTION					
•	DAILY REPORT FORM				
OVERCAST		TEMP. RANGE 75	_° то 80	<u> </u>	
CONTRACTOR YOUNGS ENVIRONMENTAL AREA WORKED COLLINS & COOPER STS. TREE					
FILL SAND CL'AY LOAM B-BORRO SAND CL'AY LOAM LOAM		=	₩ VIB. ST	EEL WHEEL EUMATIC	
s of LIFTS 12-16	INCHES				
DEPTH OF FILL Y	ARIES FT. PLACED	TO DATE YARIES	FT.		
SITY OF MATERIAL	MODIFIED AASHO T-180 I	.19.7 #/CU, FT. OPTIN	IUM MOISTURE .	9.8	
		BALLOON	DENSITY	······································	
: .	LOCATIONS AND RES	ULTS OF TESTS			
	LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION	
STATION 21+00		4'0"	8.2	95.5	
STATION 21+00		2'10"	8.0	95.3	
STATION 21+00	:	1'0"	7.8	95.1	
STATION 21+75		4'6"	8.5	96.0	
STATION 21+75		3'2"	8.1	95.0	
STATION 21+75	· · · · · · · · · · · · · · · · · · ·	2'4"	7.9	95.2	
STATION 21+75		0'10"	7.6	95.3	
STATION 22+50		5'0"	8.2	96.1	
:					
	FILL SAND CL'AY LOAM B-BORRO CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY	OVERCAST TOR YOUNGS ENVIRONMENTAL FILL SAND METHOD OF COMPACTION CLAY LOAM REPORTON CLAY CLAY CLAY CLAY CLAY STATION 21+75 STATION 21+75	OVERCAST TEMP. RANGE 75 TOR YOUNGS ENVIRONMENTAL AREA WORKEDCOLLINS METHOD OF COMPACTION VIBRATORY PLATE CL'AY LOAM BEDDROW CONDITION OF GRADE ROUGH SINCHES DEPTH OF FILL VARIES FT. PLACED TO DATE VARIES SITY OF MATERIAL MODIFIED ASSIGN T-180 ESTS THIS DATE REST SAND CONE ESTS THIS DATE REST SAND CONE ESTS TO DATE LOCATION AND RESULTS OF TESTS LOCATION 21+00 STATION 21+00 STATION 21+75 STATION 21+75	OVERCAST TEMP. RANGE 75 TO 80 TOR YOUNGS ENVIRONMENTAL AREA WORKEDCOLLINS & COOPER S FILL SAND METHOD OF COMPACTION VIBRATORY PLATE STEEL CLAY BABDERON BABDERON CONDITION OF GRADE ROUGH CONDITION OF THE CON	

MIL

FORM 306

MATERIALS INSPECTION & TESTING, INC.

MIT JOB #	94-200/Y
PROJECT	WAYNE RECLAMATION SITE
	YOUNGS ENVIRONMENTAL
CLIENT JOB	
0.75	7-14-94

	10.01	,	1000	UNIE.		
			SOILS INSP	ECTION		
		•	DAILY REPOR	T FORM		
	WEATHER	PARTLY CLOUDY	·	TEMP. RANGE 80	_° то <u>85</u>	<u> </u>
	CONTRAC	TOR YOUNG ENVI	RONMENTAL AF	EA WORKEDCOESSE S	T. TRENCH	
	TYPE OF	FILL SAND	METHOD OF COMPACTIO	N VIBRATORY PLATE	STEEL	WHEEL
		CLAY		PHEUMATIC TAMP.	VIB. ST	EEL WHEEL
		LOAM		SHEEPSFOOT	🔲 VIB. PR	EUMATIC
	•	B-BORROW		RUBBER TIRED	□	
	TYPE OF	= · ·	CONDITION OF GRADE	MOUGH	FROZE	N
	SUBGRAD	: == 1	1	Ø SMOQTH	☐ roose	
		LOAM	!	☐ *E T	MARD	
				☐ DRY	RUTTE	
	THICKNES	ss of LIFTs 12-16	INCHES			
	PLANNED	DEPTH OF FILL Y	ARIES FT PLACED	TO DATE VARIES	FT.	
	MAX. DEN	SITY OF MATERIAL	MODIFIED AASHO T-180 1	19.7 #/CU. FT. OPTIM	UM MOISTURE	9.8 =
		REQUIRED 95	METHOD OF	<u> </u>		
		ESTS THIS DATE		BALLOON		
	NO. OF T	ESTS TO DATE		✓ NUCLEAR I	ENSITY	
ſ						 -
l			LOCATIONS AND RES	ULTS OF TESTS	· 	
	TEST NO.		LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT	PERCENT COMPACTION
١	1	STATION 22+50		3'10"	8.6	96.2
	2	STATION 22+50		2'6"	8.1	95.1
	3	STATION 22+50	!	0'6"	7.3	95.8
	- 4	STATION 23+25		3'6"	7.9	95.3
	5	STATION 23+25	:	0'6"	7.1	95.0
	6	STATION 23+50		3'6"	7.7	95.2
	7	STATION 23+50		2'2"	8.0	95.4
		!				
	REMARKS	, ie				
		·				
		1				
		,				
					•	

MIT JOB #	94-200	/Y	
PROJECT	WAYNE I	RECLAMATION	SITE
		ENVIRONMENT	
CLIENT JOB #			
DATE	7-1	19-94	

				
SOILS INSPECTION				
	DAILY REPORT	r form		
WEATHER	CLEAR TO CLOUDY	TEMP. RANGE 82	_° то <u>86</u>	<u> </u>
CONTRAC	CTOR YOUNGS ENVIRONMENTAL AR	EA WORKEDCOESSE	STREET - T	RENCH
TYPE OF	FILL SAND METHOD OF COMPACTION	VIBRATORY PLATE	STEEL	WHEEL
	CLAY	PNEUMATIC TAMP,	☑ VIB. ST	EEL WHEEL
	LOAM	SHEEPSFOOT	VIB. PI	NEUMATIC
	B-BORROW	RUBBER TIRED	<u> </u>	
TYPE OF	SAND CONDITION OF GRADE	ROUGH	FROZE	N
SUBGRAD	DE CLAY	SMOOTH	LOOSE	
	LOAM	WET	HARD	
		DRY	RUTTE	D
				-
THICKNE	ss of Lifts 12-14 inches			
PLANNEC	DEPTH OF FILL VARIES FT. PLACED	TO DATE VARIES	FT.	
MAX. DEN	NSITY OF MATERIAL MODIFIED AASHO T-180 LI	9.7 */Cu. FT. OPTI	MUM MOISTURE	9.8 2
	XXX STANDARD AASHO T-99			•
	0.5			
	REQUIRED 95 % METHOD OF	TEST SAND CONE		
NO. OF 1	TESTS THIS DATE 9	BALLOON		
NO. OF 1	TESTS TO DATE	✓ NUCLEAR	DENSITY	
	LOCATIONS AND RESU	LTS OF TESTS		
TEST NO.	LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION
11	STATION 29+50	4'8"	7.4	95.4
2	STATION 29+75	3'6"	7.4	95.2
3	STATION 29+60	2'6"	7.7	95.1
4	STATION 30+30	4'6"	8.4	96.1
5	STATION 29+55	1'2"	8.3	95.7
6	STATION 30+40	3'0"	7.9	95.5
7	STATION 31+00	4'6"	9.4	96.2
8	STATION 31+20	3'0"	9.3	96.0
9 REMARKS	STATION 31+10	2'0"	8.6	96.5

94-200/Y
WAYNE RECLAMATION SITE
YOUNGS ENVIRONMENTAL
7-19-94

PAGE 1 OF 2

ONE (219) 489-1567 • 3807 GOSHEN ROAD • FORT WAYNE, INDIANA 46818

	SOILS INSPECTION			
		DAILY REPORT	FORM	
	WEATHER CLEAR TO CLOUDY		_ TEMP. RANGE 82	° _{то} <u>88</u> °
	CONTRACTOR YOUNG ENVIRONM	MENTAL ARE	EA WORKED ADDITION	
				UFFICIENT TESTS
	TYPE OF FILL SAND ME	ETHOD OF COMPACTION	VIBRATORY PLATE	STEEL WHEEL
	CLAY		PNEUMATIC TAMP.	VIB. STEEL WHEEL
	LOAM		SHEEPSFOOT	VIB. PNEUMATIC
	∠ B-BORROW		RUBBER TIRED	O
	TYPE OF SAND CO	ONDITION OF GRADE	ROUGH	FROZEN
	SUBGRADE 🔀 CLAY		✓ SMOOTH	LOOSE
	LOAM		WET	HARD
	—		DRY	RUTTED
	THICKNESS OF LIFTS 12-14 INC	CHES		
	PLANNED DEPTH OF FILL VARIE	ESFT. PLACED	TO DATE VARIES	FT.
	MAX. DENSITY OF MATERIAL T	MODIFIED AASHO T-180 11	9.7 #/cu. FT. OPTIMU	MOISTURE 9.8
)	05			
	DENSITY REQUIRED 95		=	
	NO. OF TESTS THIS DATE 15		BALLOON	
	NO. OF TESTS TO DATE		✓ NUCLEAR DE	NSITY
				

	LOCATIONS AND	RESULTS OF TESTS	•	
TEST NO.	LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION
1	STATION 22+90	2'0"	7.4	96.2
2	STATION 23+90	4'0"	7.9	95.4
3	STATION 21+10	2'0"	8.5	96.0
4	STATION 20+30	4'0"	8.1	95.8
5	STATION 19+50	2'0"	7.7	95.5
6	STATION 18+75	2'0"	8.2	95.7
7	STATION 17+70	2'0"	8.6	96.4
8	STATION 16+80	2'0"	7.8	95.6

REMARKS:

MIT JOB #	94-200/Y
PROJECT	WAYNE RECLAMATION SITE
	YOUNGS ENVIRONMENTAL
CLIENT JOB #	
DATE	7-19-94

ONE (219) 489-1567 • 3807 GOSHEN ROAD • FORT WAYNE, INDIANA 46818

			I AGE 2	. Or 2
	SOILS INSPE	ECTION		
	DAILY REPORT	FORM		
WEATHER	CLEAR TO CLOUDY	TEMP. RANGE 82	_° то <u>88</u>	<u> </u>
CONTRAC	CTOR YOUNG ENVIRONEMNTAL ARE		ONAL TESTS	
TYPE OF	FILL SAND METHOD OF COMPACTION CLAY LOAM B-BORROW	VIBRATORY PLATE PNEUMATIC TAMP. SHEEPSFOOT RUBBER TIRED	VIB. ST	EEL WHEEL
TYPE OF		ROUGH SMOOTH WET DRY	FROZE LOOSE HARD RUTTE	
THICKNE	ss of LIFTs 12-14 INCHES			
PLANNEC	DEPTH OF FILL VARIES FT. PLACED T	O DATE <u>VARIES</u>	FT.	
MAX. DEN	ISITY OF MATERIAL MODIFIED AASHO T-180 110	9 <u>. 7</u> ≉/CU. FT. OPTH	MUM MOISTURE .	9.8
NO. OF T	REQUIRED 95 % METHOD OF TESTS THIS DATE 15	SAND CONE BALLOON NUCLEAR	D EN SITY	
	LOCATIONS AND RESUL	TS OF TESTS		
TEST NO.	LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION
9	STATION 16+75	4'0"	8.2	95.3
10	STATION 16+30	2'0"	7.8	95.2
11	STATION 15+75	2'0"	8.6	96.1
12	STATION 14+25	1'0"	7.3	95.4
13	STATION 14+30	۵'0"	9.0	96.4

1'0"

4'0"

7.5

9.3

REMARKS:

14

15

STATION 13+50

STATION 13+55

95.1

95.3

MIT JOB #	94-200/Y	
	WAYNE RECLAMATION S	ITE
CLIENT	YOUNGS ENVIRONMENTA	L
LIENT JOB		
	7-20-94	

PHONE (219) 489-1567 • 3807 GOSHEN ROAD • FORT WAYNE, INDIANA 46818

			SOILS INSPI		•	
		CLOIDY TO DA	DAILY REPORT		0 00	_
:		•	RTLY CLOUDY	TEMP. RANGE 70	_° _{TO} 90	
	CONTRAC	TOR YOUNG ENV	RONMENTAL ARE	A WORKEDCOESSE	HANNA ST	TRENCH
	TYPE OF TYPE OF SUBGRAD	-	METHOD OF COMPACTION W CONDITION OF GRADE	VIBRATORY PLATE PREUMATIC TAMP. SHEEPSFOOT RUBBER TIRED ROUGH SMOOTH WET DRY		REL WHEEL
	THICKNES	SS OF LIFTS 12-14	_ INCHES			
•	PLANNED	DEPTH OF FILL	ARIES FT. PLACED T	O DATE VARIES	FT.	
:	DENSITY	REQUIRED 95	MODIFIED AASHO T-180 119 XXX STANDARD AASHO T-99 METHOD OF		IUM MOISTURE .	9.8
•		ESTS THIS DATE . ESTS TO DATE	6	MUCLEAR I	NONE TOW	
	NO. OF I	ESIS TO DATE		(Z) MUCLEAR I	ENSITI	
		:	LOCATIONS AND RESUL	TS OF TESTS		
	TEST NO.	·	LOCATION ,	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION
	1	STATION 31+90		410"	7.9_	96.7
, [2	STATION 31+85		3'0"	7.7	95.8
.	3	STATION 31+90		2'0"	8.0	97.2
	4 ;	STATION 32+55		4'0"	7.5	96.1
	5	STATION 31+80		1'0"	8.2	97.1
	6	STATION 32+50		3'0"	7.5	95.4
_	REMARKS	:				
		!				

FORM 106

. 510 (33 25**05** F.01

MATERIALS INSPECTION & TESTING, INC.

MIT JOB #	94-200-1
PROJECT	WAYNE RECLAMATION SITE
CLIENT	YOUNGS ENVIRONMENTAL
CLIENT JOB #	
DATE	7-22-94

HONE (219) 489-1567 • 3807 GOSHEN ROAD • FORT WAYNE, INDU

		SOILS INSP	ECTION		
		DAILY REPORT			
EATHER	PARTLY CLOUD		TEMP. RANGE 75	_° то 80	۰
ONTRAC	TOR TOUNGS EN	IRONMENTAL ARI	EA WORKED <u>LUESSE S</u>	IKERL - TI	KENCH
TYPE OF		METHOD OF COMPACTION W CONDITION OF GRADE	PNEUMATIC TAMP. SHEEPSFOOT RUBBER TIRED ROUGH	Ø VIB. ST	EEL WHEEL
UBGRAD	E Ø CLAY		SMOOTH WET DRY	LOOSE HARD RUTTE	
HICKNE	SS OF LIFTS 12-1	4. INCHES			
LANNEC	DEPTH OF FILL	ARIES FT. PLACED	TO DATE VARIES	FT.	
DENSITY 10. OF T		1			9.8
		LOCATIONS AND RESU	LTS OF TESTS		
TEST NO.		LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION
1	STATION 34+25	•	2'0".	9.5	95.5
2	STATION 34+50		2'0"	7.9	96.1
3	STATION 35+30		4'0"	9.2	95.1
4	STATION 35+40		3'0"	8.6	95.4
					
					
				-, -	
REMARKS	<u> </u>			·	L

MIT JOB #	94-200/Y
PROJECT	WAYNE RECLAMATION SITE
	YOUNGS ENVIRONMENTAL
CLIENT JOB #	
D. ==	7-25-94

ME (218) 489	-1567 • 3807 GOSHEN H	DAD • FORT WAYNE, INDIANA 469	DATE .	7-23-9				
		SOILS INSP	ECTION					
		DAILY REPOR	-					
WEATHE	WEATHER PARTLY CLOUDY TEMP. RANGE 75 TO 82 0							
		IRONMENTAL AR						
CONTRAC	TOR TOUNGS EN	AR	EN MORKEDOCESSE S	IREEL - L	RENCA			
TYPE OF	FILL SAND	METHOD OF COMPACTION	N VIBRATORY PLATE	STEEL	WHEEL			
	CLAY		PNEUMATIC TAMP.	✓ VIB. 57	EEL WHEEL			
	Z _B-BORRO	W	RUSSER TIRED					
TYPE OF	=	CONDITION OF GRADE	MOUGH	TROZE	N			
SUBGRAD	E CLAY		SMOOTH WET	LOOSE				
			☐ DRY	RUTTE	•			
THICKNE	SS OF LIFTS _12-1	4 INCHES						
PLANNE	DEPTH OF FILL	ARIES FT. PLACED	TO DATE VARIES	FT.				
MAX. DE	ISITY OF MATERIA	MODIFIED AASHO T-180	19.7 2/50 27 027		0 8 ~			
		XXX STANDARD AASHO T-99		ion moist one	*			
DENSITY	REQUIRED 95	% METHOD OF	TEST _ SAND CONE					
	TESTS THIS DATE .	6	BALLOON					
NO. OF 1	TESTS TO DATE		Z NUCLEAR_ I	DENSITY				
<u> </u>		LOCATIONS AND RESI	ULTS OF TESTS					
TEST NO.		LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCINT COMPACTION			
1	STATION 35+60		2'0"	8.5	95.3			
2	STATION 35+30		1'0"	9.1	97.1			
3	STATION 36+00		4'0"	8.6	96.2			
4	STATION 36+05		3'0"	7.9	95.5			
5	STATION 36+15		2'0"	8.3	96.0			
6	STATION 36+00		1'0"	9.0	95.9			
					L			
REMARK	S:							

FORM 106

MATERIALS INSPECTION & TESTING, INC.

MIT JOB #	94-200/Y
PROJECT	WAYNE RECLAMATION SITE
	YOUNGS ENVIRONMENTAL
CLIENT JOB	

700 F					
DATE	7-26-94	PAGE	1	OF	4

		SOILS INS	PECTION	· · · · · ·	
	CIRAR	DAILY REPOR	• • • •	9 9 0	0
	CLEAR		TEMP, RANGE 75		
. CONTRAC	TOR YOUNGS EN	TRONMENTAL A	REA WORKEDBLUE RIV	ER	
TYPE OF		CONDITION OF GRADE	VIBRATORY PLATE PNEUMATIC TAMP. SHEEPSFOOT RUBBER TIRED ROUGH SMOOTH WET		EEL WHEEL EUMATIC
THICKNE	ss of LIFTS 12-1	4. INCHES			
PLANNE	DEPTH OF FILL	ARIES FT. PLACED	TO DATE VARIES	FT.	
MAX. DE?	NSITY OF MATERIA	MODIFIED AASHO T-180	16.3 #/CU. FT. OPTIN	IUM MOISTURE .	14.2:
NO. OF	REQUIRED 90 FESTS THIS DATE .	,	F TEST SAND CONE BALLOON NUCLEAR	DENSITY	
		LOCATIONS AND RES	ULTS OF TESTS		
TEST NO.		LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCINT COMPACTION
1	STATION 36+90		3'10"	14.0	92.3
2	STATION 37+50		4'0"	12.9	91.5
3	STATION 38+05		4'0"	13.3	93.3
4	STATION 36+75		3'0"	14.2	91.6
5	STATION 37+40		3'0"	12.5	90.8
6	STATION 37+95		3'0"	13.0	93.6
7	STATION 36+80		2'0"	12.7	94.0
8	STATION 37+80		210"	13.6	91.2
REMARK	5:				

MIT JOB #	94-200/Y			
PROJECT	WAYNE RECLAMATION SITE			
	YOUNGS ENVIRONMENTAL			
CLIENT JOB #				

IENT	TOUNGO LATTI	COLUMN .		<u> </u>	_
OB #					
DATE	7-26-94	PAGE	2	OF	4
_					_

		SOILS IN	SPECTION	-	
	DAILY REPORT FORM				
WEATHER	CLEAR		TEMP. RANGE 75	_° то <u>80</u>	
CONTRAC	TOR YOUNGS ENV	IRONMENTAL	_ AREA WORKEDBLUE RIV	ER AREA	
TYPE OF	E CLAY	AND CONDITION OF GRA	SMOOTH WET	VIB. PR	EEL WHEEL
	☑ CLAYE. SA		DRY	RUTTE	•
THICKNE	ss of Lifts 12-1	4 INCHES			
PLANNED	DEPTH OF FILL	ARIES FT. PL	ACED TO DATE VARIES	FT.	
MAX. DEN	SITY OF MATERIAL	MODIFIED AASHO T-	180 116.3 #/CU. FT. OPTIM	IUM MOISTURE	14.2.
NO. OF T	REQUIRED 90 ESTS THIS DATE ESTS TO DATE		D OF TEST SAND CONE BALLOON MUCLEAR_I	DENSITY	
İ		LOCATIONS AND	RESULTS OF TESTS		
TEST NO.		LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION
9	STATION 36+95		0.0"	13.6	93.6
10	STATION 37+45		0.0".	14.3	91.4
11	STATION 38+25		0.0"	13.2	92.5
12	STATION 38+95		3'6"	12.6	90.5
13	STATION 39+50		4'0"	13.9	91.6
14	STATION 38+75		2'6"	14.1	93.0
15	STATION 39+40	_	3'0"	13.0	92.1
16	STATION 40+05		4'0"	12.2	95.3
REMARKS	5 :				

MIT JOB # 94-20	00/Y
PROJECT WAYN	E RECLAMATION SITE
CLIENT YOUN	GS ENVIRONMENTAL
CLIENT JOB #	

ju 🌶			_			
ATE	7-26-94	PAGE	3	OF	4	

		SOILS INSF	ECTION		
	CLEAR	DAILY REPOR		0 00	٥
			TEMP, RANGE 75		
CONTRAC	TOR YOUNGS EN	IRONMENTAL AR	EA WORKEDBLUE RIV	er area	
TYPE OF	=	CONDITION OF GRADE	VIBRATORY PLATE PNEUMATIC TAMP. SHEEPSFOOT RUBBER TIRED ROUGH SMOOTH WET	=	REL WHEEL IEUMATIC
THICKNE		4 INCHES	_	_	
PLANNEC	DEPTH OF FILL .	VARIES FT. PLACED	TO DATE VARIES	FT.	
MAX. UEN	SITY OF MATERIA	STANDARD AASHO T-199	16.3 #/CU. FT. OPTIN	SRUTZION NU	14-2-*
DENSITY REQUIRED 95 % METHOD OF TEST SAND CONE NO. OF TESTS THIS DATE 29 SAND CONE NO. OF TESTS TO DATE NUCLEAR DENSITY					
TEST NO.		LOCATIONS AND RESU	DEPTH BELOW	PERCENT	PERCENT
		·	FINISHED GRADE	MOISTURE	COMPACTION
17	STATION 39+00		2'0"	11.7	91.6
18	STATION 40+80		4'0"	13.4	94.5
19	STATION 41+50		4'0"	12.9	93.7
20	STATION 42+20		4'0"	11.9	91.4
21	STATION 39+95		2'6"	12.5	93.1
22	STATION 40+70		2'6"	12.0	92.1
23	STATION 41+45		2'6"	11.5	90.6
24	STATION 42+15		3'0"	12.3	91.4
REMARKS	Ś:				

MIT JOB #	94-200/	Y				_
PROJECT	WAYNE F	ECLAP	MITA	S	TE	
	YOUNGS					_
CLIENT JOB #						
0445	7-26	-94	PAGE		OF	<u>_</u>

		-			
	•	SOILS INSP	ECTION		
		DAILY REPOR	T FORM		
WEATHER	CLEAR		TEMP, RANGE 75	_° то <u>80</u>	
CONTRAC	TOR YOUNGS ENV	IRONMENTAL AF	EA WORKEDBLUE RIV	ER AREA	
TYPE OF	FILL SAND	METHOD OF COMPACTIO	N 🔀 VIBRATORY PLATE	STEEL VIB. ST	wheel Eel wheel
TYPE OF	LOAM CLAYEY SAND	SAND CONDITION OF GRADE	SHEEPSFOOT RUBBER TIRED ROUGH	VIB. P	HEUMATIC
SUBGRAD	CITATEA	SAND	SMOOTH WET DAY	LOOSE HARD RUTTE	0
THICKNE	ss of LIFTS 12-1	4 INCHES			
PLANNE	DEPTH OF FILL Y	ARIES FT. PLACED	TO DATE VARIES	FT,	
MAX. DE	SITY OF MATERIAL	MODIFIED AASHO T-180 1	16_3 4/CU, FT, OPTIN	IUM MOISTURE	14.2
	REQUIRED 90	% METHOD OF	TEST SAND CONE		
NO. OF 1	TESTS TO DATE		Ø NUCLEAR I	DENSITY	
		LOCATIONS AND RES	JLTS OF TESTS		
TEST HO.		LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCINT COMPACTION
25	STATION 40+25		1'6"	13.5	91.0
26	STATION 40+90		0.0"	12.6	92.3
27	STATION 41+65		0'6"	13.1	91.5
28	STATION 42+10		1'0"	12.5	93.1
29	STATION 39+60		1'0"	11.8	91.5
				···	
REMARK	S:				
	•				
	•				

MIT JOB # 94-200/Y
PROJECT WAYNE RECLAMATION SITE
CLIENT YOUNGS ENVIRONMENTAL
LIENT JOB #

PHONE (219) 489-1567 - 3807 GOSHEN ROAD - F

ESTING, INC.	CLIENT YOUNGS EN			NVIRONMENTAL		
	CLIENT JOB # _					
FORT WAYNE, INDIANA 46818	DATE_	7-	27-94	PAGE 1	OP	4
OILS INSPECT	ION					
DAILY REPORT FOR	ч					
TEM	P. RANGE 75	_° TO 8	2 0		l	

		SOILS INSI	PECTION		
•		DAILY REPOR	RT FORM		
WEATHER	CLEAR		TEMP, RANGE 75	° to 82	
CONTRAC	TOR YOUNGS EN	IRONMENTAL	REA WORKEDBLUE RIV	ER AREA	
TYPE OF		CONDITION OF GRADE	ON VIBRATORY PLATE PHEUMATIC TAMP. SHEEPSFOOT RUBBER TIRED ROUGH SMOOTH WET ORY	_	EEL WHEEL HEUMATIC
THICKNE	SS OF LIFTS 12-1	4 INCHES			
	•	VARIES FT. PLACED MODIFIED AASHO T-180 XXX STANDARO AASHO T-99			
NO. OF T	DENSITY REQUIRED 90 % METHOD OF TEST SAND CONE NO. OF TESTS THIS DATE 28 SAND CONE NO. OF TESTS TO DATE 28 SAND CONE				
<u></u>	T	LOCATIONS AND RES	DEPTH BELOW	PERCENT	PERCINT
TEST NO.		LOCATION	FINISHED GRADE	MOISTURE	COMPACTION
11	STATION 42+85		4'0"	11.7	93.4
2	STATION 43+60		4'0"	12.2	94.3
3	STATION 44+30		4'0"	11.1	92.0
4	STATION 44+85		4'0"	11.5	95,1
5	STATION 42+00		0.0"±	11.9	94.2
6	STATION 39+15		0.0"±	10.8	92.1
7	STATION 39+95		0.0"±	11.3	91.7
8	STATION 40+65		0.0"±	12.3	93.1
REMARK	s: ;				

MIT JOB	94-200/Y					
PROJECT			ATION	\$:	ITE	
CLIENT	YOUNG	ENVIRO	NMENT!	T		_
CLIENT JOB #						
DATE		-27-94	PAGE	2	OF	4

	SOILS INSPECTION				
	_	DAILY REPOR			
WEATHER	CLEAR		TEMP. RANGE 75	_° TO <u>82</u>	-
CONTRAC	TOR YOUNGS EN	VIRONMENTAL AF	EA WORKEDBLUE RIV	ER AREA	
TYPE OF TYPE OF SUBGRAD		CONDITION OF GRADE	VIBRATORY PLATE PNEUMATIC TAMP. SHEEPSFOOT RUBBER TIRED ROUGH SMOOTH WET DRY	VIB. STEEL PHEE	
THICKNE	ss of LIFTS 12=				
PLANNEC	DEPTH OF FILL.	VARIES FT. PLACED	TO DATE VARIES	FT.	
MAX. DEN	ISITY OF MATERIA	MODIFIED AASHO T-180	116.3_ #/CU. FT. OPTIN	IUM MOISTURE .	14.2.*
NO. OF T	DENSITY REQUIRED 90 METHOD OF TEST SAND CONE NO. OF TESTS THIS DATE 28 BALLOON NO. OF TESTS TO DATE MUCLEAR DENSITY				
		LOCATIONS AND RES	ULTS OF TESTS		
TEST NO.		LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION
9	STATION 42+75		2'6"	13.3	95.5
1.0	STATION 43+50		3'0"	12.9	94.3
. 11	STATION 44+20		2'6"	13.7	92.2
12	STATION 44+90		3'0"	12.5	91.2
13	STATION 45+40		4'0"	11.6	92.0
14	STATION 45+95		410"	10.6	90.9
15	STATION 46+75		4'0"	9.9	90.9
16	STATION 43+00		0.0"	10.9	91.5
REMARKS	5 :				

TO TO 1224 TO PECUL

MATERIALS INSPECTION & TESTING, INC.

MIT JOB # 94-200/Y
PROJECT WAYNE RECLAMATION SITE
CLIENT YOUNGS ENVIRONMENTAL
CLIENT JOB #

JOB #	·					
DATE	7-27-94	PAGE	3	OF	4	

		SOILS INSF			-
	, ,	DAILY REPOR			_
WEATHER	CLEAR		TEMP, RANGE 75	_ото 82	
CONTRAC	TOR YOUNGS EN	TRONMENTAL	REA WORKEDBLUE RIV	ER AREA	
TYPE OF	= -	CONDITION OF GRADE	N VIGRATORY PLATE PREUMATIC TAMP. SHEEPSFOOT RUBBER TIRED ROUGH SMOOTH WET DRY	VIB. ST VIB. PK	EEL WHEEL JEUMATIC
	SS OF LIFTS 12-1				
PLANNEC	DEPTH OF FILL.	VARIES FT. PLACED	TO DATE VARIES	FT.	
DENSITY	MAX. DENSITY OF MATERIA MODIFIED AASHO T-180 116.3 #/CU. FT. OPTIMUM MOISTURE 14.2 Z DENSITY REQUIRED 90 METHOD OF TEST SAND CONE NO. OF TESTS THIS DATE 28 BALLOON				
NO. OF	TESTS TO DATE	LOCATIONS AND RES	NUCLEAR I	DENSITY	
TEST NO.	:	LOCATION AND RES	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION
17	STATION 42+90		1'0"	14.3	90.6
18	STATION 43+45		2'0"	13.0	90.0
19	STATION 43+75		1'0"	13.9	95.4
20	STATION 44+50		1'0"	12.6	96.3
21	STATION 45+00		2'0"	11.6	92.1
22	STATION 45+65		3'0"	10.0	90.8
23	STATION 46+40		3'0"	11.1	94.0
24	STATION 43+70		0.0"	12.0	90.8
REMARK	· S:				

MIT JOB ≢	94-200/Y		
PROJECT	WAYNE REC	LAMATION	SITE
CLIENT	YOUNGS E	NVIRONME	NTAL
LIENT JOB			
	7-27-94	PAGE 4	A SO

PHONE (219) 489-1567 - 3807 GOSHEN ROAD - FORT WAYNE, INDIANA 46818

THE CLEAR TEMP, RANGE 75 ° TO 82 ° CONTRACTOR YOUNGS ENVIRONMENTAL AREA WORKED BLUE RIVER AREA METHOD OF COMPACTION VIBRATORY PLATE STEEL WHEEL		<u></u>	SOILS INSF			
TYPE OF FILL SAND CLAY CLAY CLAY SAND CONDITION OF GRADE TYPE OF SAND SUBGRADE CLAY CONDITION OF GRADE CONDITION WEATHER	CLEAR			_° _{TO} <u>82</u>	o	
CLAYEN SAND SHEER THEEL SAND SHOTH LOOSE SHOTH LOOSE SHOTH SHO						
PLANNED DEPTH OF FILL VARIES FT. PLACED TO DATE VARIES FT. MAX. DENSITY OF MATERIAL MODIFIED AASHO 1-180 116.3 P/CU. FT. OPTIMUM MOISTURE 14.2 NOW STANDARD AASHO 1-199 DENSITY REQUIRED 90 % METHOD OF TEST SAND COME DEALLOON NO. OF TESTS THIS DATE NO. OF TESTS TO DATE DENSITY LOCATIONS AND RESULTS OF TESTS TEST NO. LOCATION PERCENT COMPACTION PERCENT COMPACTION 11.8 96.0 25 STATION 44+40 0.0" 11.8 96.0 26 STATION 45+25 1'0" 10.6 91.7 27 STATION 46+00 2'0" 11.7 91.2 28 STATION 46+70 2'0" 10.9 93.3	TYPE OF	CLAY LOAM CLAYEY SAND E CLAY	SAND CONDITION OF GRADE	PREUMATIC TAMP. SHEEPSFOOT RUBBER TIRED ROUGH SMOOTH WET	VIB. ST	FEL WHEEL NEUMATIC
MAX. DENSITY OF MATERIAL	THICKNE	ss of LIFTS _12-	4 INCHES			
DENSITY REQUIRED 90	PLANNED	DEPTH OF FILL.	VARIES FT. PLACED	TO DATE VARIES	FT.	
NO. OF TESTS THIS DATE 28	MAX. DENSITY OF MATERIAL MODIFIED AASHO T-180 116.3 #/CU. FT. OPTIMUM MOISTURE 14.2 3					14.2
TEST NO. LOCATION DEPTH BELOW FINISHED GRADE MOISTURE COMPACTION	NO. OF TESTS THIS DATE 28 BALLOON					
25 STATION 44+40 0.0" 11.8 96.0			LOCATIONS AND RES	ULTS OF TESTS		
26 STATION 45+25 1'0" 10.6 91.7 27 STATION 46+00 2'0" 11.7 91.2 28 STATION 46+70 2'0" 10.9 93.3	TEST NO.		LOCATION			
27 STATION 46+00 2'0" 11.7 91.2 28 STATION 46+70 2'0" 10.9 93.3	25	STATION 44+40		0.0"	11.8	96.0
28 STATION 46+70 2'0" 10.9 93.3	26	STATION 45+25		1'0"	10.6	91.7
	27	STATION 46+00		2'0"	11.7	91.2
	28	STATION 46+70		2'0"	10.9	93.3
						
HEMARKS:	REMARKS	; 5:				
		i				

MIT JOB #	94-200/Y			_	
PROJECT	WAYNE RECLA	MATION	S	ITE	
	YOUNGS ENVI				_
CLIENT JOB #					
DATE	7-28-94	PAGE	1	OF	3

.iONE (219) 489-1567 • 3807 GOSHEN ROAD • FORT WAYNE, INDIANA 46818

	SOILS INSP			
	DAILY REPORT	FORM		
WEATHE	R PARTLY CLOUDY	TEMP. RANGE 75	_° то <u>80</u>	0
CONTRAC	CTOR YOUNGS ENVIRONMENTAL ARE	A WORKEDBLUE RI	VER AREA	
TYPE OF		VIBRATORY PLATE PNEUMATIC TAMP. SHEEPSFOOT RUBBER TIRED ROUGH SMOOTH WET DRY	VIB. ST	EEL WHEEL NEUMATIC
THICKNE	ss of LIFTs 12-18_ INCHES			
PLANNE	DEPTH OF FILL VARIES FT. PLACED	TO DATE VARIES	FT.	
DENSITY	REQUIRED 90 % METHOD OF TESTS TO DATE			14.2 -
	LOCATIONS AND RESUL	TS OF TESTS		
TEST NO.	LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION
1	STATION 47+45	4'0"	13.0	95.6
2	STATION 48+20	4'0"	10.2	91.2
3	STATION 46+25	0.0"±	9.6	93.5
4	STATION 47+00	0.0"±	11.3	92.0
5	STATION 47+25	2'6"	11.0	91.6
6	STATION 48+00	2'6"	13.3	93.1
7	STATION 47+75	1'0"	10.7	96.1
8	STATION 48+45	3'0"	10.9	95.0

REMARKS:

MIT JOB #	94-200	/N					
PROJECT	VAYNE	RECL	AMATIC	N	SIT	E	
PROJECT CLIENT	YOUNGS	ENV	IRONM	'N'	[AL		_
CLIENT JOB # .							_
D. 75			PAGE	2	OF	3	_

ONE (219) 489-1567 • 3807 GOSHEN ROAD • FORT WAYNE, INDIANA 46818

SOILS INS	PECTION	
DAILY REPO	ORT FORM	
WEATHER PARTLY CLOUDY	TEMP. RANGE 75	_° то <u>80</u> °
CONTRACTOR YOUNGS ENVIRONMENTAL	AREA WORKEDBLUE RIV	ER AREA
TYPE OF FILL SAND METHOD OF COMPACTI CLAY LOAM CLAYEY SAND TYPE OF SAND CONDITION OF GRADE SUBGRADE CLAY LOAM CLAYEY SAND	PNEUMATIC TAMP. SHEEPSFOOT RUBBER TIRED ROUGH SMOOTH WET	VIB. STEEL WHEEL VIB. PNEUMATIC FROZEN LOOSE HARD
THICKNESS OF LIFTS 12-18 INCHES	DRY	RUTTED
PLANNED DEPTH OF FILL VARIES FT. PLACE MAX. DENSITY OF MATERIAL MODIFIED AASHO T-180 XXX STANDARD AASHO T-99		
DENSITY REQUIRED 90 % METHOD ON NO. OF TESTS THIS DATE	=	DENSITY
LOCATIONS AND RE	CILL TO OF TESTS	

	LOCATIONS AND RESUL	TS OF TESTS		
TEST NO.	LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION
9	STATION 48+90	3'6"	12.2	92.5
10	STATION 49+70	4'0"	11.7	93.6
11	STATION 50+50	4'0"	12.0	90.7
12	STATION 51+75	3'6"	10.0	93.5
13	STATION 48+75	2'0"	12.3	92.3
14	STATION 49+50	2'0"	11.1	94.1
15	STATION 49+80	3'0"	11.6	92.1
16	STATION 50+25	2'0"	10.7	91.8

REMARKS:

MIT JOB #	94-200/Y		
PROJECT	WAYNE RECLAMATION	SITE	
	YOUNGS ENVIRONMENT		_
CLIENT JOB #			
DATE	7-28-94 PA	GE 3	OF

PAGE 3 OF 3

ONE (219) 489-1567 • 3807 GOSHEN' ROAD • FORT WAYNE, INDIANA 46818

SOILS INSPECTION					
	DAILY REPORT FORM				
WEATHER	PARTLY CLOUDY	. TEMP. RANGE 75	_° то <u>80</u>	<u> </u>	
CONTRAC	CTOR YOUNGS ENVIRONMENTAL ARE	A WORKED BLUE RI	VER AREA		
TYPE OF TYPE OF SUBGRAD		VIBRATORY PLATE PNEUMATIC TAMP. SHEEPSFOOT RUBBER TIRED ROUGH SMOOTH WET DRY		EEL WHEEL FEUMATIC	
	SS OF LIFTS 12-18 INCHES DEPTH OF FILL VARIES FT. PLACED T	o date <u>VARIES</u>	FT.		
MAX. DEN	MAX. DENSITY OF MATERIAL MODIFIED AASHO T-180 116.3 #/CU. FT. OPTIMUM MOISTURE 14.2 %				
NO. OF 1	REQUIRED 90 % METHOD OF THE STREETS TO DATE	EST SAND CONE BALLOON NUCLEAR			
	LOCATÍONS AND RESUL	TS OF TESTS			
TEST NO.	LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION	
17	STATION 50+75	3'6"	10.6	94.3	
18	STATION 51+90	2'0"	10.2	92.0	
19	STATION 51+50	2'6"	9.9	91.0	
20	STATION 49+25	1'0"	10.5	92.5	

0.0"±

0.0"±

0.0"±

1'6"

11.7

12.0

10.9

11.1

REMARKS:

21

22

23

24

STATION 49+00

STATION 50+65

STATION 51+20

STATION 51+60

93.3

91.1

94.3

90.8

PROJECT WAYNE RECLAMATION SITE

MIT JOB # 94-200/Y

ONE (219) 489-1567 • 3807 GOSHEN ROAD • FORT WAYNE, INDIANA 46818

CLIENT	YOUNGS	ENVIRONMENTAL	
CLIENT JOB #			
DATE	7-	-29-94	

SOILS INSPI	ECTION	·
DAILY REPORT	FORM	
WEATHER PARTLY CLOUDY	_ TEMP. RANGE 75	° то <u>80 °</u>
CONTRACTOR YOUNGS ENVIRONMENTAL ARE	A WORKED COLLINS S	TREET - MANHOLE
TYPE OF FILL SAND METHOD OF COMPACTION CLAY LOAM B-BORROW	PHEUMATIC TAMP. SHEEPSFOOT RUBBER TIRED	STEEL WHEEL VIB. STEEL WHEEL VIB. PNEUMATIC
TYPE OF SAND CONDITION OF GRADE SUBGRADE CLAY LOAM	ROUGH SMOOTH WET DRY	FROZEN LOOSE HARD RUTTED
THICKNESS OF LIFTS 12-16 INCHES		
PLANNED DEPTH OF FILL VARIES FT. PLACED T	TO DATE VARIES	FT.
MAX. DENSITY OF MATERIAL MODIFIED AASHO T-180	9.7 ≠/cu. FT. OPTIMU	M MOISTURE 9.2
DENSITY REQUIRED 95 % METHOD OF TOO NO. OF TESTS TO DATE	TEST SAND CONE BALLOON NUCLEAR DE	. •

LOCATIONS AND RESULTS OF TESTS				
TEST NO.	LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION
1	STATION 17+30	4'0"	8.9	95.5
2	STATION 17+30	3'0"	8.6	96.1
3	STATION 17+30	2'0"	7.9	95.3
4	STATION 17+30	1'0"	8.4	96.3
5	STATION 17+18	4'0"	8.8	95.4
6	STATION 17+18	3'0"	9.2	96.0
7	STATION 17+18	2'0"	8.1	95.1
8	STATION 17+15	1'0"	9.0	96.4

REMARKS:

TYPE OF

SUBGRADE

MATERIALS INSPECTION & TESTING, INC.

MIT JOB #	94-200/Y
PROJECT	WAYNE RECLAMATION SITE
CUENT	YOUNGS ENVIRONMENTAL
CLIENT JOB #	
	9_1_04

LOCSE

Z HARD

T RUTTED

HONE (219) 489-1567 - 3807 GOSF	IEN ROAD • 1	FORT WAYNE,	INCHANA	46818
---------------------------------	--------------	-------------	---------	-------

E (219) 489-1507	- 3807 GOSHE	N ROAD - FORT WAYNE, INDIANA 4	DATE_	8-1-94
		SOILS INS	PECTION	
		DAILY REPO	RT FORM	
WEATHER	LEAR		TEMP, RANGE 80	о то 85 °
CONTRACTOR	YOUNGS	ENVIRONMENTAL A	REA WORKED NEAR L	ANDFILL AREA
TYPE OF FIL	L 🔲 SAND	METHOD OF COMPACT	ON THE PIERATORY PLATE	ATEEL SHEEL
	CLAT		PREUMATIC TAMP.	VIE. STEEL SHEEL
	LOAM		SHEEPSFOOT	VIO. PREUMATIC
	NCT TA	X SAND	RUSTER TIRED	
TYPE AF	T SAME	CONDITION OF GRADE	C BOUCH	T FROTEN

Z SMOOTH

T WET

DAY

THICKNESS OF LIFTS 12-18 INCHES

D SAND

CLAY

LOAM

CLAYEY SAND

PLANNED DEPTH OF FILL YARTES FT. PLACED TO DATE YARTES FT.

MAX. DENSITY OF MATERIAL | MODIFIED AASHO T-188 | 116.3 9/CU. FT. COTHUM MOISTURE 14.2 |

DENSITY REQUIRED __90 1 METHOD OF TEST [] SAMO CONE NO. OF TESTS THIS DATE ______ BALLOON

MICLEAR DESSITY NO. OF TESTS TO DATE

	I acaman	DEPTH BELOW	PERCENT	PERCZHY
TEST NO.	LOCATION	FINISHED GRADE	HOISTURE	COMPACTION
1	STATION 53+65	4'0"	9.5	95_1
2	STATION 53+75	2'6"	9.3	95.8
3	STATION 54+15	4'0"	10.2	94.2
4	STATION 54+90	3'0"	10.8	93,6
5	STATION 55+S0	410"	9.1	92.3
6	STATION 53+70	0.0"	11.1	91.5
7	STATION 54+45	2'0"	9.8	90.8
8	STATION 54+50	0.0*	10.1	92.3

REMARKS:

FORM 106

MIT JOB #	94-200	/YY	
		RECLAMATION	SITE
		ENVIDENCE TEL	
CLIENT JOB #			

RT WAYNE INDIANA 46818 DATE 8-2-94 PAGE 1		R-7-06 PACE	
	46619 D	1 0-2-24 1100	

		SOILS INSP	ECTION		
		DAILY REPORT	FORM		
EATHER	CLOUDY		TEMP. RANGE 80	° то 85	
		TVINONENTAL ARE	ea worked <mark>hastbia</mark>	ER TREATHO	MT PLANT
TYPE OF	FILL SAND	METHOD OF COMPACTION	VIBRATORY PLATE		
	CIVA	Y SAND	SHEEPSFOOT	U VID. PH	
TYPE OF	SAND	CONDITION OF GRADE	☐ ROUCH	FROIE	
	CLAYE	Y SAFO	DRY	MARO	D
THICKNE:	ss of LIFTS _12				
PLANNED	DEPTH OF FILL	VARIES FT. PLACED	TO DATE YARTES	FT.	
MAX. OEN	ISITY OF MATERI	AL MODIFIED AASHO 7-100 11 YES STANDARD AASHO T-90	6.3 #/CU, PT. 0PTII	NUM MONSTURE .	16.2
MAX. DENSITY OF MATERIAL MODIFIED AASHO T-100 116-3 P/CU. PT. OPTIMUM MOISTURE 16-2 S DENSITY REQUIRED 90 % METHOD OF TEST SAND COME					
		METHOD OF			
10. OF T	TESTS THIS DATE	» метнор ог	TEST SAND CONE		
10. OF T		» метнор ог	TEST SAND CONE		
10. OF T	TESTS THIS DATE	» метнор ог	TEST SAND CONE		
10. OF T	TESTS THIS DATE	% метнов of	TEST SAND CONE		PERCENT
10. OF T	TESTS THIS DATE	LOCATIONS AND RESU	TEST SAND CONE BALLOON BUCLEAR- LTS OF TESTS DEFTH BELOO	DENSITY PERCENT	PERCENT
10. OF T	TESTS THIS DATE	LOCATIONS AND RESU	TEST SAND CONE BALLOOM MUCLEAR- PLTS OF TESTS DEFTH BELOW FINISHED SRADE	PERCENT MONTURE	PERCENT COMPACTION
10. OF T	STATION 7480	LOCATIONS AND RESULDCATION	TEST SAND CONE BALLOON BALLOON BUCLEAR. PLTS OF TESTS DEFTH BELON FINISHED SRADE 41011	PERCENT MONTURE	PERCENT COMPACTION 93.1
TEST HO.	STATION 7+05	LOCATIONS AND RESU	TEST SAND CONE BALLOON BUCLEAR- PLTS OF TESTS DEFTH BELOW FINISHED STADE 4'0" A'0"	PERCENT MONTURE 14.0 13.2	PERCENT COMPACTION 93.1
TEST HO. 1 2 3	STATION 7+05 STATION 7+70	LOCATIONS AND RESULD CATION	TEST SAND CONE BALLOON BUCLEAR- PLTS OF TESTS DEFTH BELOW FINISHED STADE 4'0" 4'0" 2'6"	PERCENT MONTURE 14.0 13.2 12.5	PERCENT COMPACTION 93.1 91.5
10. OF THO. OF TEST NO.	STATION 7+70 STATION 7+70	LOGATIONS AND RESU	TEST SAND CONE BALLOOM BUCLEAR ULTS OF TESTS DEFTH BELOW FINISHED SRADE 4'0" 4'0" 2'6" 2'6"	PERCENT MOSTURE 14.0 13.2 12.5	93.1 91.5 92.2 91.8
TEST HO. 1 2 3 4	STATION 7+70 STATION 7+70 STATION 7+70 STATION 6+50	LOCATIONS AND RESU	TEST SAND CONE BALLOOM BALLOOM BALLOOM BALLOOM BALLOOM FINISHED STADE 410# 2'6" 2'6" 4'0"	PERCENT MONTURE 14.0 13.2 12.5 12.1	93.1 91.5 92.2 91.8 92.0
TEST HO. 1 2 3 4 5	STATION 7+70 STATION 7+70 STATION 7+70 STATION 7+70 STATION 6+50 STATION 6+00	LOCATIONS AND RESU	TEST SAND CONE BALLOON BALLOON BALLOON BALLOON BALLOON FINISHED STADE 410" 4'0" 2'6" 2'6" 4'0" 4'0"	PERCENT MONTURE 14.0 13.2 12.5 12.1 13.0 13.0	PERCENT COMPACTION 93.1 91.5 92.2 91.8 92.0
TEST HO. 1 2 3 4 5 6 7	STATION 7+80 STATION 7+80 STATION 7+70 STATION 7+70 STATION 6+50 STATION 6+60 STATION 6+60 STATION 6+80	LOCATIONS AND RESU	TEST SAND CONE BALLOON BALLOON BALLOON BALLOON BALLOON FINISHED STADE 41011 41011 27611 27611 41011 41011 41011 31011	PERCENT MONTURE 14.0 13.2 12.5 12.1 13.0 13.0	93.1 91.5 92.2 91.8 92.0 91.3
TEST NO. 1 2 3 4 5 6 7	STATION 7+80 STATION 7+80 STATION 7+70 STATION 7+70 STATION 6+50 STATION 6+60 STATION 6+60 STATION 6+80	LOCATIONS AND RESU	TEST SAND CONE BALLOON BALLOON BALLOON BALLOON BALLOON FINISHED STADE 41011 41011 27611 27611 41011 41011 41011 31011	PERCENT MONTURE 14.0 13.2 12.5 12.1 13.0 13.0	93.1 91.5 92.2 91.8 92.0 92.0

FORM 106

	74-200/ I	
PROJECT	WAYNE RECL	AMATION SITE
CLIENT	YOUNGS ENV	IRONMENTAL
CLIENT JOB #		
DATE	8-2-94	PAGE 2

PHONE (219) 489-1567 • 3807 GOSHEN ROAD • FORT WAYNE, INDIANA 48818

		SOILS INSP	PECTION	· · · · · · · · · · · · · · · · · · ·	
		DAILY REPOR			
WEATHER	CLOUDY		TEMP, RANGE 80	_° 70 <u>85</u>	
CONTRAC	TOR YOUNGS E	NVIRONMENTAL AF	REA WORKED HASTEMAT	ER TREATOR	ETT PLANT
TYPE OF	CLAY CLAY SAND	CONDITION OF GRADE	PREUMATIC TAMP. SHEEPSFOOT RUBBER TIREO		EEL WHEEL EUMATIC
THICKNE	ss of LIFTS J2	ELB INCHES			
PLANNED	DEPTH OF FILL	VARIES FT. PLACED	TO DATE YARIRS	FT.	
MAX. DEN	SITY OF MATER	AL MODIFIED AASHO T-198 L	.16.3 4/CU. PT. OPTIN	UM BOISTURE	14-2
NO. OF T		% METHOD OF	F TEST [] SAND COME [] BALLOON [] NUCLEAR [DENSITY	
		LOCATIONS AND RES	ULTS OF TESTS		
TEST NO.		LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION
9	STATION 7+85		0.0₩	12.0	92.5
10	STATION 7+10	-	0.07	12.5	92.2
11	STATION 6+90		1'6"	13.2	91.0
12	STATION 5+30		4'0"	11.7	90.5
13	STATION 5+00		2'0"	10.9	91.6
14	STATION 4+90		0.0"±	12.1	90.4
					· ·
REMARKS	5:				

1 POPM 106

MIT JOB #	94-200/Y	
	WAYNE RECLAMATION SITE	
CHENT	YOUNGS ENVIRONMENTAL	-
CLIENT JOB #		_
	8-3-94 PAGE 1	_

PHONE (219) 489-1667 - 3807 GOSHEP ROAD - FORT WAYNE, INDIANA 46819

		SOILS INSP			
		DAILY REPORT			_
WEATHER	PARTLY CLO	TEDY	TEMP. RANGE 78	_° то <u>85 </u>	•
CONTRAC	TOR YOUNGS I	ANTROMEDIAL ARE	A WORKED WASTEWAT	ER TREATM	ENT PLANT
TYPE OF	FILL SAND	METHOD OF COMPACTION	VIBRATORY PLAYE PREUMATIC TAMP.	=	est ansir Angel
TYPE OF	C GLAXED	SAND CONDITION OF GRADE	SHEEPSFOOT RUBBER TIRES ROUGH	☐ YIB. PP	HEUMATIC N
SUBGRAD	E CLAY	SAND	SNOOTH WET DRY	LOOSE LOOSE HARD RUTTE	
THICKNE	55 OF LIFTS	-18 INCHES			
PLANNED	DEPTH OF FILL	VARTES FT. PLACED	TO DATE VARIES	FT.	
MAX. DEN	ISITY OF MATERI	AL MODIFIED AASHO T-180 11 XXX STANDARD AASHO T-99	6.3 9/CU, FT. OPTIM	UN MOISTURE	14.2 %
	REQUIRED 99	% METHOD OF	TEST TAND COME		
NO. OF T	ESTS TO DATE.		2 NUCLEAR I	YTIEME	
		LOCATIONS AND RESUL	LTS OF TESTS		
TEST NO.		LOCATION	DEFTH SELOW FRISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION
1	STATION 4+25		3'0"	11.3	92.1
2	STATION 4400		410"	10.5	90.3
3	STATION 3+60		4'0"	12.1	92.0
4	STATION 3+00		4'0"	11.7	91.3
5	STATION 2+30		3'6"	10.8	90.5
6	STATION 1+18		3'6"	8.1	95.0
7	STATION 1+25		2'0"	8.5	95.3
8	STATION 1+35		0.0"	8.9	95.6
REMARKS	S :				
		ì			

MAT JOB #	94-200/Y
PROJECT	WAYNE RECLAMATION SITE
CLIENT	YOUNGS ENVIRONMENTAL
CUENT JOB #	

PHONE (219) 485-1567 - 3807 GOSHEH ROAD - FORT WAYNE, INDIANA 48818

JOB #			
DATE	8-3-94	PAGE 2	

					
	SOILS INSPECTION				
	DAILY REPORT FORM				
WEATHER	WEATHER PARTLY CLOUDY TEMP, RANGE 80 0 TO 85 0				
CONTRAC	TOR YOUNGS E	NVIRORGIBITAL AR	ea worked <u>Wastehat</u>	ER TREATM	NT PLANT
TYPE OF TYPE OF SUBGRAD	BAND	METHOD OF COMPACTION Y SAND CONDITION OF GRADE Y SAND	VIBRATORY PLATE PREUMATIC TAMP, SHEEPSFOOT RUBBER TIRED ROUGH SMOOTH BET DRY		REL WHEEL CUMATIC
	55 OF LIFTS _12				
		VARIES FT. PLACED AL DESCRIPTION ASSESSMENT T-199		-	14.2
NO, OF T		S METHOD OF	MUCLEAR :	DENSITY	1
TEST NO.	I	LOCATION AND RESI	DEPTH BELOW	PERCENT MOISTURE	PERCENT COMPACTION
9	STATION 4+15		2'6"	11.0	91.5
10	STATION 3+50	ŕ	2'0"	12.3	90.8
11	STATION 2+25		2'0"	10.5	91.0
12	STATION 4+20		0.0"	10.7	92.2
13	STATION 3+50		0.0"	11.3	90.3
14	STATION 2+30		0.0"	12.0	93.3
REMARK	s:				
		1			

FORM 106

MIT JGB 🗸	94-200/1
PROJECT	WAYNE RECLAMATION SITE
	YOUNGS ENVIRONMENTAL
CLIENT JOB #	
DATE	8-5-94

MUCLEAR DENSITY

HONE (219) 489-1567 • 3807 GOSHEN ROAD • FORT WAYNE, INDIANA 46818

NO. OF TESTS TO DATE

SOILS INSPECTION
DAILY REPORT FORM
WEATHER PARTLY CLOUDY TEMP. RANGE 70 TO 75 °
CONTRACTOR YOUNGS ENVIRONMENTAL AREA WORKED COESSE STREET
TYPE OF FILL SAND METHOD OF COMPACTION VIBRATORY PLATE STEEL WHEEL CLAY PNEUMATIC TAMP. VIB. STEEL WHEEL LOAM SHEEPSFOOT VIB. PNEUMATIC B-BORROW RUBBER TIRED TYPE OF SAND CONDITION OF GRADE ROUGH FROZEN SUBGRADE CLAY SMOOTH LOOSE LOAM PET RUTTED
THICKNESS OF LIFTS 12-16 INCHES
PLANNED DEPTH OF FILL VARIES FT. PLACED TO DATE VARIES FT.
MAX. DENSITY OF MATERIAL MODIFIED AASHO T-180 XXX STANDARD AASHO T-99 110.7 #/CU. FT. OPTIMUM MOISTURE 9.8
DENSITY REQUIRED 95 % METHOD OF TEST SAND CONE NO. OF TESTS THIS DATE 8 BALLOON

LOCATIONS AND RESULTS OF TESTS						
TEST NO.	LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT		
1	STATION 29+50	3'0"	7.0	95.2		
2	STATION 29+45	2'6"	6.7	95.7		
3	STATION 29+18	3'0"	7.6	96.1		
4	STATION 29+05	3'6"	7.3	95.0		
5	STATION 29+30	2'0"	6.9	96.3		
6	STATION 29+20	1'0"	6.4	95.0		
7	STATION 29+45	1'0"	7.5	95.8		
8	STATION 29+10	1'0"	6.8	95.2		

REMARKS:

10_50_13324 F6+6+44+

MATERIALS INSPECTION & TESTING, INC.

MIT JOB #	94-200/Y
PROJECT	WAYNE RECLAMATION SITE
CLIENT	YOUNGS ENVIRONMENTAL
CLIENT JOB #	
	9-26-04

_						
			SOILS INSPI			
			DAILY REPORT FORM			
WEATHER CLOUDY			TEMP. RANGE 68 0 TO 80 0			
CONTRACTOR YOUNGS		TOR YOUNGS	AREA WORKED WATERLINE			
	TYPE OF	FILL SAND CLAY LOAM SANO	METHOD OF COMPACTION	PNEUMATIC TAMP. SHEEPSFOOT RUBBER TIRED ROUGH	VIB. PH	EEL WHEEL
,	SUBGRAD	LOAN		Ø SMOOTH □ WET □ DRY	COOSE HARD RUTTE	
	THICKNE	ss of LIFTs 12	INCHES			
	PLANNE	DEPTH OF FILL	VARIES FT. PLACED T	O DATE VARIES	FT.	
	MAX. DEN	ISITY OF MATERIA	XXX MODIFIED AASHO T-180 119	9.7 #/CU. FT. OPTIN	IUM MOISTURE .	9.8
	NO, OF 1	REQUIRED 95 rests this date	% METHOD OF	TEST SAMD CONE BALLOON NUCLEAR	DENSITY	
			LOCATIONS AND RESUL	TS OF TESTS		
	TEST NO.		LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION
	1	STATION 27+95		8.0'±	8.0	96.7
	2	STATION 27+95		7.0'±	8.5	95.8
٠	- 3	STATION 27+95		6.0'±	8.3	96.3
	4	STATION 27+95	:	5.01±	8.4	95.9
	5	STATION 27+95		4.0'±	7.5	95.8
i	6	STATION 27+95		3.0'±	7.8	96.0
	7	STATION 27+95	1	2.0'±	7.4	95.0
	8	STATION 27+95	1	0.5'±	7.4	96.1
	REMARK	S:				

MIT JOB #	94-200/Y
PROJECT	WAYNE RECLAMATION SITE
CLIENT	YOUNGS ENVIRONMENTAL
CLIENT JOB	

J08 #		
DATE	8-29-94	

(SOILS INSP			
		_	DAILY REPORT	FORM		
		CLEAR		TEMP. RANGE 65	_° то <u>80</u>	_
	CONTRAC	TOR YOUNGS ENV	IRONMENTAL ARE	A WORKED PIPE TRE	NCH	
		FILL SAND CLAY LOAM	METHOD OF COMPACTION	PHEUMATIC TAMP. SHEEPSFOOT RUBBER TIRED	Vt8. ST	EEL WHEEL
	TYPE OF	E GCAY	CONDITION OF GRADE	MOUGH THE	LOOSE HARD RUTTE	THERMALE AND SALE
	THICKNE	SS OF LIFTS 12	_ INCHES			
	PLANNEC	DEPTH OF FILL	VARIES FT. PLACED	TO DATE VARIES	FT.	
	MAX. DEN	SITY OF MATERIAL	XXX MODIFIED AASHO T-180 11 TSTANDARD AASHO T-99	9.7 */CU. FT. OPTIM	OUM MOISTURE .	9.8
DENSITY REQUIRED 95 NO. OF TESTS THIS DATE NO. OF TESTS TO DATE				TEST SAND CONE BALLOON NUCLEAR	DENSITY	
		,	LOCATIONS AND RESU	LTS OF TESTS		
	TEST HO.	· · · · · · · · · · · · · · · · · · ·	LOCATION	DEPTH BELOW FINISHED GRADE	PERCENT MOISTURE	PERCENT COMPACTION
	1	STATION 25+50		7.0°±	7.9	95.3
	2	STATION 25+50		6.0'±	7.7	95.6
	3	STATION 25+50	performance of more	5.0'±	8.1	96.1
	4	STATION 25+50		4.0'±	7.6	95.5
	5	STATION 25+50		3.0'±	8.3	96.3
	6	STATION 25+50		2.0'±	8.1	97.2
	7	STATION 25+50	-	1.0'±	8.5	96.1
	8	STATION 25+50		0.0"±	8.7	95.8
	REMARKS): 				
		(,

CHANGE ORDERS & FIELD ORDERS

D1 CHANGE ORDERS

Pg. 1 of <u>5</u>
Including Attachments

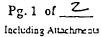
CONTRACT CHANGE ORDER

NO. 2

IF APPROVED, you are hereby directed to comply with the following changes from the contract plans and specifications.

0:	MIKE KILEY	Date: 10/20/9	<u>/</u> Proje	ct No.: 250146
onti	act: WRR RA CONSTRUCTION	ON Work Item Affected:	Owne	r: WRR RD/RA SETTLORS
		Well Drilli	NG	
em	Written Description of Change	and Reason		
lo.	Include Affect on Completion S	Schedule.		_
7	FROVIDE QUOT	ation to a	LECHASE AL	ud install
			VE wells	(#49-55)
	in the AS	TIUST area	05 Shows	in the
			TATION SI	All include
	All ASSOCIATI			strol to
	tie into the	<u> </u>	dESIAN.	277.07. 70
	112 1100 1116	EXISTING	<u> </u>	
				
				
			· -	
				
				
		·		
he ti	me provided for completion in th	he contract is ((unchanged))(i	increased) (decreased) l	oy <u>C</u> calendar days.
he ti	me provided for completion in th	he contract is ((unchanged))(i	increased) (decreased) l	by calendar days.
	112		increased) (decreased) l	by calendar days.
	113	Dansey 10 /20/74	,	
Recor	112	Dansey 10 /20/74	,	
Recor	nmended by Sou House Engineer eer Comment: Change		,	<i>i</i> —
Recor	mmended by Sou Ha	Densey 18 /20/74 DEDER VERBA 1 10/3/94.	Illy Appao	VED by JOHN
Recor	nmended by Sou House Engineer eer Comment: Change	Densey 18 /20/74 DEDER VERBA 1 10/3/94.	,	VED by JOHN
ngin	eer Comment: Charge	Densey 18 /20/74 DEDER VERBA 1 10/3/94.	Illy Appao	VED by JOHN
Recor	eer Comment: Change EHRENDACH ON	Deschy 18 /25/74 Desce Verba 1 10/3/94. U.S.	Illy Appao	VED by JOHN
Recor	eer Comment: Charge EHRENDACH ON EPA Review:	Deschy 18 /25/74 Desce Verba 1 10/3/94. U.S.	Illy Appao	VED by JOHN
Recor	eer Comment: Charge EHRENDACH ON EPA Review:	Deschy 18 /25/74 Desce Verba 1 10/3/94. U.S.	Illy Appao	VED by JOHN
Recor	eer Comment: Change Engineer EHRENDACH ON EPA Review:	Deschy 18 /25/74 Desce Verba 1 10/3/94. U.S.	Illy Appao	VED by JOHN
Recor	eer Comment: Change Engineer EHRENDACH ON EPA Review:	Deschy 18 /25/74 Desce Verba 1 10/3/94. U.S.	Illy Appao	VED by JOHN
Recor	eer Comment: Change EHRENDACH ON EPA Review: EPA Comment:	Dasky 18/28/74 Dark 10/3/94. Date U.S.	Illy Appao	VED by JOHN
Recor	eer Comment: Change Engineer EHRENDACH ON EPA Review:	Dasky 18/28/74 Dark 10/3/94. Date U.S.	Ally Appro	VED BY JOHN es/No
Recor	eer Comment: Change EHRENDACH ON EPA Review: EPA Comment:	Dasky 18/28/74 Dark 10/3/94. Date U.S.	Illy Appao	VED by JOHN
Recor	eer Comment: Change EHRENDACH ON EPA Review: EPA Comment:	Dasky 18/28/74 Dark 10/3/94. Date U.S.	Ally Appro	VED BY JOHN es/No
J.S. I	eer Comment: Change EHRENDACH ON EPA Review: EPA Comment:	Date Date Date Date Date Date	Engineer	VED BY JOHN es/No Date

10/18/94


Pg. 1 of _______ Including Attachment

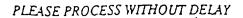
CONTRACT CHANGE ORDER

	NO. 3-/	_
APPROVED you are hereby directed	to comply with the following change	s from the contract plans and specifications.
ra i no 120, you me neleoy unceled	to comply with the following change	
Mille KilEV	Date: 9.15.94	Project No.: 250146 .
ntract: WRR RA CONSTRUCTION	Work Item Affected:	Owner: WRR RD/RA SETTLORS
•	ForceMAIN	
Written Description of Change an		
Include Affect on Completion Sci		
· 		NTAL quided bore of a
10 inch polyethyle		STATE POUTE #9 to
allow installation		syethylane forcemain.
		he Indiana DEpartment
of TRANSPORTATI		w an open cut
excavation accros.		
	should include	
with this work		ly Notes that installation
		ain piping is Not
included in the		
INSTALLATION OF T		ethylene piping will be
pain per the un		
ocuments. It is		Noted that the
CONTRACTOR Shall		for obtaining the
NECESSARY permit	5 to conduct to	is work.
		· · · · · · · · · · · · · · · · · · ·
		•
time provided for completion in the	contract is ((unchanged))(increase	d) (decreased) by calendar days.
2 1101		•
ommended by: Den Miles	eschi 1 9.15.94	·
Engineer	Date	
	uge order does No.	t imply ANY Changes to
e specifications in	The Blue River cro	SSINGS. Charges in the &
	odologies will be	covered by Field Order #11
EPA Review:	U.S. EPA A	ttachments: Yes/No
RPM	Date	·
. EPA Comment:	·	
		
al Disposition (circle one): ACCEP	TED RETECTED .	•
ar Disposition (efficie offe): ACCEP	E REJECTED.	Ingineer Date
	1	

This document shall become an amendment to the contract and all provisions of the contract will apply hereto.

U. . PG. 2 FOR IDENTIFICATION OF COST IMPACT, IF ANY. IF NO COST IMPACT CHECK HERE __

CONTRACT CHANGE ORDER


APPROVED, you are hereby directed to comply with the following changes from the contract plans and specifications. Project No.: 250146 Date: ontract: WRR RA CONSTRUCTION Work Item Affected: Construction Owner: WRR RD/RA SETTLORS Written Description of Change and Reason ĊΠι Include Affect on Completion Schedule. connections to steel Additional The time provided for completion in the contract is (unchanged) (increased) (decreased) by _____ calendar days. 8-31-94 DRAWING 70210-025 (CZ1). Er. neer Comment: _ U.S. EPA Attachments: Yes/No U. EPA Review: RPM U.S. EPA Comment: Final Disposition (circle one): ACCEPTED REJECTED Engineer Date

This document shall become an amendment to the contract and all provisions of the contract will apply hereto.

U. PG. 2 FOR IDENTIFICATION OF COST IMPACT, IF ANY. IF NO COST IMPACT CHECK HERE

COFORM1.XLS

COFORM1.XLS

Pg. 1 of <u>2</u> lectuding Attachment

CONTRACT CHANGE ORDER

NO._____

MiKE Riley	Date: 9-7-	94	Project No.: 250146 .
act: WRR RA CONSTRUCTI			Owner: WRR RD/RA SETTLORS
	FORCEMA		
Written Description of Change		·	
Include Affect on Completion			·
OVIDE Pricing 7	to restore Road	Iways dist	urbed during
NSTruction of	the forcemain	as fol	lows (from
ip to bettom):			,
· linch b	ituminous sur	face course	mixture #11
			mixture #9
			here concrete base
is remove			
eference design	drawing 895	70-07 for	origiNAL
reet restoration	V detait.		
	· · · · · · · · · · · · · · · · · · ·		
			·
,			
· · · · · · · · · · · · · · · · · · ·			
			
		3	
me provided for completion in l	the contract is Unchanged	(increased) (decrei	ased) by calendar days.
R Me	Leacher Brus 9	27911	•
nmended by:	Date		•
eer Comment: Change		1 of the die	ection of Town 7:- 4
eer Comment: Changes Columbia City L	EMPTMENT OF	Public Work	rection of Tony Zicke
	7	, .	
EPA Review:	/	U.S. EPA Attachmen	ts: Yes/No
. RPM	Date		
EPA Comment:			
•			,
Disposition (circle one): ACC	EPTED REJECTED		·
	. ==	Engineer	Date
	•		
	<u> </u>		

PLEASE PROCESS WITHOUT DELAY

Pg. 1	of_	<u>.</u>	4
Includin	a Ait	າເກາ	nest

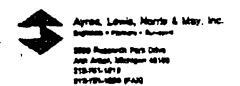
CONTRACT CHANGE ORDER

F APPROVED, you are hereby directed to comply with the following changes from the contract plans and specifications. Project No.: 250146 Owner: WRR RD/RA SETTLORS Contract: WRR RA CONSTRUCTION Work Item Affected: Written Description of Change and Reason Include Affect on Completion Schedule. io. The time provided for completion in the contract is (unchanged), (increased) (decreased) by _____ calendar days. Recommended by: ineer Comment: U.S. EPA Attachments: Yes/No U . EPA Review: RPM U.S. EPA Comment: Final Disposition (circle one): ACCEPTED REJECTED

This document shall become an amendment to the contract and all provisions of the contract will apply hereto.

LEPG. 2 FOR IDENTIFICATION OF COST IMPACT, IF ANY. IF NO COST IMPACT CHECK HERE

COFORM1.XLS



Pg. 1	οſ	
lectuding	g At	เวรากระชน

CONTRACT CHANGE ORDER

NO. 5'

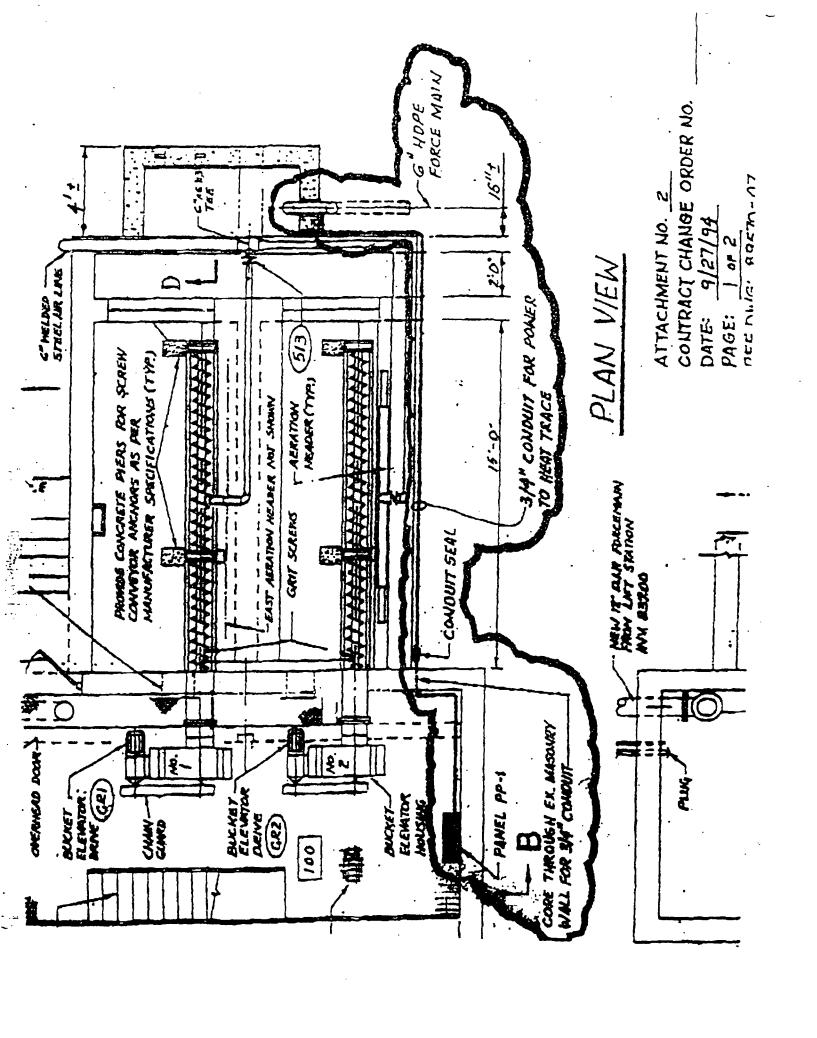
Wike Riley	Date: 10/20/94	Project No.: 250146
ict: WRR RA CONSTRUC	TION Work Item Affected:	Owner: WRR RD/RA SETTLORS
	POLICEMAIN	
Written Description of Char		
Include Affect on Completi	on Schedule.	
Privide 9:10	TATION to midity T	HO IN OF the
	UNTO THE get the	sinher of the
WASTE WATER	trentinent plant	as outlined
in the sta	tached proposal	
		
		
		
	, .	
·		
ma agailded for about of an i	on the contract is further and times	sed) (decreased) by calendar days.
те ргочшев јог сотрштоп г	1 11 Commact is Chinenangean (increase	calendar days.
nmended by:	binitar 1 co /zi/24	
Engi	neer Dale	
eer Comment:		
PA Review:	/ I! C ED:	Attachments: Yes/No
	PM Date	Atmendials: 12/140
iPA Comment:	"14 Date	
A Comment		
Disposition (circle one): AC	CEPTED REJECTED	
,		Engineer Date
		•
· · · · · · · · · · · · · · · · · · ·		

CONTRACT CHANGE ORDER NO. 8

Provide pricing to change the force main connection detail at the Grit Building to the details as shown on Attachments 1 and 2. Also to make the following changes:

- Delete concrete wall core and Thunderline link seal.
- Delete apool piece of ductile iron pipe.
- Change pipe termination to the detail shown on Attachment No. 2.
- 4. Pipe insulation and heat trace, as called for on Attachment No. 2, shall be as follows:
 - a) Provide factory pre-molded, shop or site mitered glass fiber segment type insulation for pipe and pipe fittings. Fitting insulation to be of same traciness and material as adjoining pipe insulation. All insulation and released materials such as tape and mastic to meet national and model building code sequirements for the and smoke development.
 - b) Provide factory-formed, fibergises pipe insulated factory-jacksted "system" type conforming strictly to fire-resistive qualities specified as follows:

All insulation, adhesives, coatings, seelers, tapes, shall have a figme spread rating of 25 or less and smoke development of 50 or less when tested in accordance with ASTM E-84, NFPA 225, UL 723, and further must meet the requirements of NFPA 90-A where applicable and local mechanical codes.

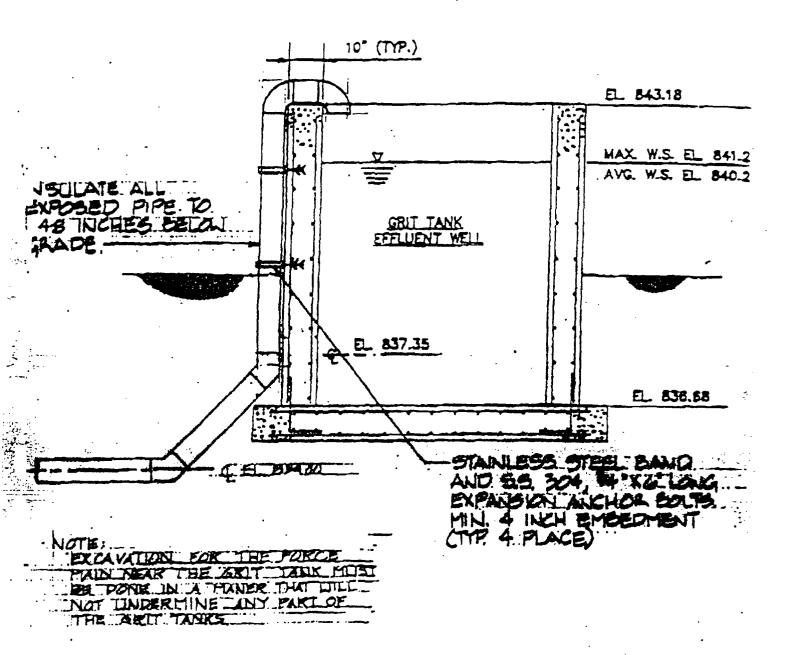

c) Jacket to be fiberglass reinforced kraft paper with aluminum toll.

- d) Provide smooth .016" atuminum jacket over all insulated piping, fittings and tank connections for weather protection. Use stainless steel bands with 1/2" strips for fastening.
- Provide heat trace tape, tess, terminations power kits, and all accessories as required to be applied to piping.
 - Cable voltage rated at 120V.
 - 2) Cable capable of 3 watts/finear foct.
 - Cable to be self regulating type, 130°F maximum operating temperature.
 - 4) Provide (1) ambient temperature acheor, adjustable from 15 140°F to cut power above 45°F to all circuits.
 - Provide (1) line sensing stat per circuit, adjustable from 25°F 100°F minimum. Set at 46°F to regulate power.
 - Provide ET labels for all piping and accessories heat traced, spaced at 10°-0° maximum.
 - All power connection boxes shall be provided with J-boxes.
 - S) Complete system to be weether-proofed, by Chemelex Auto Trace Mod.: SRL-3.1.
- f) No insulation shall be cut where floor stands are located. If hangers have been installed which violates this strict requirement notify the Engineer immediately. Piping systems shall be tested and found free of all leaks prior to installation of insulation covering.
- g) All surfaces shall be clean and dry when covering is applied. Covering to be dry when installed and before and during application of any finish, unless such finish requires specifically a wetted surface for application.

- h) All adhesives, cements, and mastics shall be compatible with materials applied and shall not attach materials in either wet-or dry state.
- Install insulation using professional insulators who have adequate experience and ability, and per manufacturers instructions.
- Pre-moided fitting covers (inserts) to be precisely cut of mitered to fit or be sucked snugly into the shroat of fitting and edges adjacent to pipe covering, turbed, sucked, taped, etc., to form a fully insulated pipe covering. Use adhesive and/or tape specified for type of insulation to ensure a shorough vapor barrier.
- k) Seal ends securely to prevent any moisture from entering into the insulation.

ATTACHMEN! NO.___ CONTRACT CHANGE ORDER NO. DATE: 9/27/94 PAGE: | OF | REF. DWG. 89570-07 FOR CONTINUATION OF GROMETRIC AND-SITE PL CRIT BUE DING SEE ATTACHMENT NO. 2 1.839 PALOS N. POWER POLI (TYP.) 1125.67 M CON TROL **SULDING** Stope Romp to \$ Above Prost. CONTROL 粉料 BUILDING 1.1. 844 88

104817 N.



CONTRACT CHANGE ORDER NO.

DATE: 9/27/94

PAGE: 2 0F 2

REF. DWG: 89570-07

FORCE MAIN CONNECTION
AT GRIT BUILDING

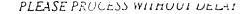
D2

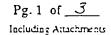
FIELD ORDERS

Pg. 1 of _______ Including Attachments

FIELD ORDER

NO.	,	1
110.		


You are hereby requested to comply with the following changes from the contract plans and specifications.


0: M, KE R, /=1	Date: 7.5.94	Project No.: 250/46
Contract: WESTON 106		Owner: LIRR NON-CIT!
Contract: WESTON is b	AND SITE PEPARATION	5= 770 25
tem Written Description of Change and	Reason	Attachments, References, Affected
No. Include Affect on Completion Sche	dule.	Contract Documents
1. RELOCATE CENTER	line of gravel access	NONE
ROAD PARTOXIMAT	cly 2014 NORTH of	
Incorinal Shown	in design araning	
70210 - DIZ. RE/O	CATING THE Gravel	
access road will	accomplish the	
following:		
	ishuction of access	
	ugh existing tree	
Shrub In	NE.	
b. Avrio po	ssible damage to	
	WELLS MINSS NO MINS	· ANO
	locating the large	
	e which is localed	
- apprekio sati	=/y 60 ft west of	
•	N' side of the treatment	
building.	11	
he location of	the treatment building	
	ShowN on design	
drawing 70210-D		
The time provided for completion in the	contract is (unchanged) (increased) (dec	creased) byCalendar days.
16/	11 . B. 118 - 114	
Recommended by: 12. Heigineer Engineer	CI I DEN IN GENCHY	
Engineer Comment:	of annual access and	in a sister of the line
Engineer Comment. 18/38/17/2018	TOTAL TOTAL	2 (m) 13 / EN/ 13/11/100 E
Engineer Comment: Rejection is #12 on design draws gravel road to pre-7	the thirty building	TOTAL POLICE NOW
trees AND brush ".	Maillent Collaine to	MINIMITE ETERRING AT
	/U.S. EPA Attachment	s. Yes / No
RPM	O.S. El W Attachment	3. 1637110
U.S. EPA Comment:		
O.S. Et A Comment.		
		· · · · · · · · · · · · · · · · · · ·
Approved by:		
Owner		
11 1 1-1	1 . 0/0/04	
Contractor	71-11777	• .

By accepting this Field Order, CONTRACTOR acknowledges that work will be performed for no increase in the contracted amount.

This document shall become an amendment to the contract and all provisions of the contract will apply hereto.

WRRF01.XLS 6/30/94

NO 2-	
NO	

ou are hereby requested to comply with the following changes from the contract plans and specifications.

To: M.KE KilEV	Date: 7-6-94	Project No.: 250146
Contract: WESTON 100	Work Item Affected:	Owner: WRR NON-City
# 10702	FORCEMAIN	SETTELES
Item Written Description of Change:	and Reason .	Attachments, References, Affected
io. Include Affect on Completion S		Contract Documents
	E of the Breamain	Pg. ZOF3 - COVER /= HEr
AS Shown on the	be attached table	
Cust 3 of 3.	The table details	from Ayers Lewis Nor.3
. Modified Station	11N9 AND JOPES	· · · · · · · · · · · · · · · · · · ·
TRESE NEW 5/2	out should result in	Pa. 3 of 3 - Table tetailing modified Stationing And
A more positiv	E acting sustem and	modified Stationing And
Still maintain	the SAME NUMBER	3/0015.
of air release vi		
>		
The time provided for completion in t	he contract is (unchanged) (increased)	(decreased) by calendar days.
		(decreased) by calcidar days.
Recommended by: // / // Engineer	Chi BEN MEGERCHY	
Engineer	7	
Engineer Comment: Nowe.	•	
7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2		
		
U.S. EPA Review:	/ U.S. EPA Attach	ments: Yes / No
RPM		
U.S. EPA Comment:		
J.D. 2111 COMMOND		
		
Approved by:	1	
Approved by:		-
21 1 1	11 -11	
Accepted by:	UL, 17/7/94	
J Contractor		

By accepting this Field Order, CONTRACTOR acknowledges that work will be performed for no increase in the contracted amount.

This document shall become an amendment to the contract and all provisions of the contract will apply hereto.

WRRFO1.XLS

6/30/94

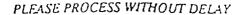
Pg. 1 of / Including Attachments

FIELD ORDER

NO. 3

"hu are hereby requested to comply with the following changes from the contract plans and specifications.

To: MillE KilEy	Date: 7-14-94	Project No.: 250/46
Contract: WESTON JUS	Work Item Affected: Clearing	Owner: WRR- NON-CITY
# 10702	AND SITE Preparation	SETTIORS
Item Written Description of Change and		Attachments, References, Affected
include Affect on Completion Sche	dule.	Contract Documents
CHANGE THE ELEVA	TION of Coordinate	NONE
	AND 19 As defined	
on design drawing	7 70210D/Z (C8)	
from eleVATION	830,00 1	
Cleration 832.00.	This CHANGE is	
being made to	avoid run off from	
the gravel acces		
ON / to the decor	AMINATION PAD.	
The time provided for completion in the	contract is (unchanged) (increased) (de	creased) byO_ calendar days.
·		
ecommended by: Sen Haby Las	ely 1 BTM	
Engineer		v.
Ingineer Comment: Nove		
J.S. EPA Review:	/U.S. EPA Attachment	is: Yes/No
RPM		
J.S. EPA Comment:		
Approved by:		
Owner		
James of his Man A to Ma	L Wisilau	
Accepted by: Contractor] '-'/-'/- '}	•
Condictor		


By accepting this Field Order, CONTRACTOR acknowledges that work will be performed for no increase in the contracted amount.

This document shall become an amendment to the contract and all provisions of the contract will apply hereto.

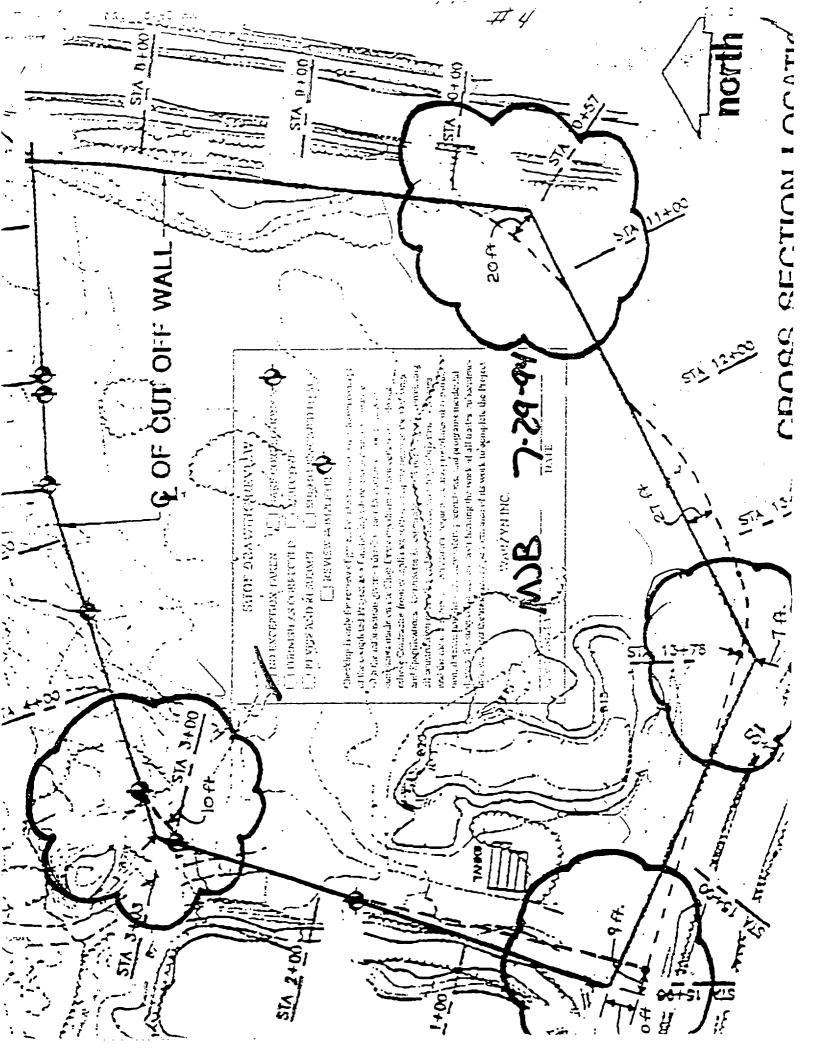
WRRF01.XLS

6/30/94

Pg. 1 of <u>L</u>

FIELD ORDER

	11	
NIO	4	
NO	/	


IF APPROVED, you are hereby directed to comply with the following changes from the contract plans and specifications.

To: MIKE RILEY	Date: 8-2-94.	Project No.: Z50/46
Contract: WESTON JOB	Work Item Affected:	Owner: WLK NON-CITY
# 1070Z	CUT -OFF- WALL	SETTIORS
Item Written Description of Change and	Reason	Attachments, References, Affected
No. Include Affect on Completion Scho	dule.	Contract Documents
1. RELOCATE THE al.	GNMENT OF the	Pa ZOF Z -
	AS ShoWN ON	SKETCH OF
the AttachED 5	KETCH. The	CUT-OFF-WAII
	THE CUT-OFF-WALL	RE-ALIGNMENT.
	at the CONTRACTOR'S	STAMPED 7-29-94.
request to fa	cilitate construction	
of those segn		
cut-off-wall a	long the Blue River.	
	<u> </u>	
		<u> </u>
	·	
	<u></u>	
The time provided for completion in the	contract is (unchanged) (decreased) by	O calendar days.
1 .60	1 0 1100	
Recommended by: Den Pageac	RUIDEN MGEACHY	
Engineer	Ry I BEN MGENCHY	
Engineer Comment: NoNE.		
U.S. EPA Review:	/ U.S. EPA Attachment	is: Yes/No
RPM		
U.S. EPA Comment:	·	
,		
Approved by:		
PRP Group Re	presentative	
	1	
Accepted by: Mital 1. h	413 Aug 94	·
Contractor	7	

, By accepting this Field Order, CONTRACTOR acknowledges that work will be performed for no increase in the contracted amount or extension of the contract schedule.

This document shall become an unrendment in the contract and all provisions of the contract will apply hereto.

WRRPOLXLS - 7/12/94

Pg. 1	of	3_
		achments

	_
NO	<u> </u>

Project No .:

IF APPROVED, you are hereby directed to comply with the following changes from the contract plans and specifications.

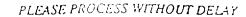
Work Item Affected:

Date:

# 10702 Pretrostment Bldg.	SETTIONS
Item Written Description of Change and Reason	Attachments, References, Affected
No. Include Affect on Completion Schedule.	Contract Documents
1. Kerise the exterior surface	P95 Z53 -
preparation AND COATING OF STEEL	FIELD TECHNICAL
tranks No. T-1 AND Nd. T-5 AS	MEMORANDUM #7
detailed on the Attached Field	detailing revised
TECHNICAL MEMORAN dum No. 7. This	surface preparation
revision is being made to avoid	and wating.
the passibility of developing	
pinholes on the tank's exteriors.	
IT is anticipated that the	
increased labor costs to apply two	
coatings to the tANKS Exteriors	Will
be offset by the decreesed labor	
COSTS in sulface preparation. No	
increased costs or adjustment a	£
Schedule is anticipated	
Recommended by Sen 12 by Lacky BTM Engineer Comment: None	· .
RPM	achments: Yes / No
U.S. EPA Comment:	
	
	
Approved by: PRP Group Representative	
A second box	
Accepted by:	
Contractor	

By accepting this Field Order, CONTRACTOR acknowledges that work will be performed for no increase in the contracted amount or extension of the contract schedule.

This document shall become an amendment to the contract and all provisions of the contract will apply hereto.


WRRFOLXLS - 7/12/94

- 1	C OF 3	19. 1 at a
·- - -	FIELD GEDER #5) FIELD TECHNICAL MEMORANDO	M (TECH MENO #7)
Mr. Mike Kiley /	No. 7 PROJECT	CONSTR. OF R.D.
Wester		WAYNE RECLAM. & Locus. Columbia City, IN.
		It 250/46
	DATE: August 5	19 <i>94</i>
·	•	•
In reply to your request f		
, the foll	owing clarification is is	sueu.
The following clarification	n of the Contract Documen	ts is issued:
12vist Specification	SECTION 11348, 1	9E 7 PART 2:02
4 read as follow	<u>v : </u>	
2.02 ProTECTIVE	COATINGS	
Z.OZ. 1 Epory An	MINE COATINGS	
A. MANUTO	CTURERS:	
· .	a.	COATINGS PLASITE TIZZHAR
		COATINGS, PLASITE 7122
B. Epoxy A	amine shall have	solids content greater
- HAN =	50% by volume	DER ASTM D-1697.
		coats of Plasite 7/22
HAR	AppliED to INSIA	E OF TANK.
		of PlasiTE 7100 ACP
	Corrosion prime	
	of PLASITE 712	E APPLIED 18
- OUTSIC	de of tANK.	es and contin
e poxy	interior suitace amine coatings.	wing upping
RIBUTION:	BY Jan 19	Some Li
	Resident Eng	ineer /

	· · · · · · · · · · · · · · · · · · ·	,	/
r v angr	(FIELD ORDER A	_	(TECH MENO #
	FIELD TECHNICAL M		
Mr. Mike Litery Weston	No. 7	PROJECT CONSTR.	
WESTON		WAYNE RE	CITY, IN.
		Calumbia	City IN.
		# 2501	46
	DATE: August	5 1994	
	DRIL. 199051	17_77	
In reply to your request	t for Field Informati	on, RFI No(s)	
, the fo	ollowing clarification	n is issued:	
The following clarificat	tion of the Contract	Documents is issued	:
	s shall receive		
PLASITE	TIZZ HAR. E.	XTERIOR AND	All AppueteNAN
such as	lacores, plan	forms AND	hann coils
	• /		site 70 7/00
•		A	
	O ONE COAT	·	
G. INTERI	OR SURTACE	preparation	Shall be
	Procedure No.		
	dii shall be		
	ch.		
H. EXTERIOR		shall be com	mercial
0/75)	The Place	= 7100 000	COATED WITH
•			HIVD OVC
COAT D.	f Plasite	7/22.	· · · · · · · · · · · · · · · · · · ·
•			
;		·	
			
•			

STRIBUTION:

Resident Engineer

Pg. 1 of/_	
Including Attachments	

	/	
NO.	0	
1117		

1 APPROVED, you are hereby directed to comply with the following changes from the contract plans and specifications.

10: ////KE /KI/EY		Date. 7-76 17	1110Jett 110 200796
	Jos	Work Item Affected:	Owner: WRL NON-CIR
# 10702	-	Pretreatment Blog.	SETTIOTS
Item Written Description	of Change and		Attachments, References, Affected
	ompletion Sche	dule.	Contract Documents
. The requ	lire MENT	for duchile iron	/ Nont
		'S kyees AND TEES.	REFERENCE DESIGN
ON The	Yinch	ductile iRON	drawing 70210 DZO
SAVITARY	discha	age live from the	E (C16)./
treatmen	+ buik	INE to the	
Septic.	holding	/ HANK Shall be	
modified	1 1	allow USE of	
the app	ropriate	plastic fittings	
with 1	HE duci	17.	
		7/	
<u> </u>			
, <u></u>			
he time provided for com	nletion in the	contract is (unchanged) (decrease	d) by O calendar days
iie tiiiie provided tot ooil	. 4//	1 (unitarily)	a, o, antender days.
ecommended by:	Hu year	Aus AM	
cconancided of	Engineer		
Engineer Comment: 75	is field	order is being 1	SSUED AT the
	equest	Who is having	difficulty appliance
ductile iron	7 7 7	- 	The state of the s
<u> </u>	7777.5		
T.S. EPA Review:		/U.S. EPA Attac	hments: Yes/No
	RPM		
U.S. EPA Comment:			
			
<u> </u>			
Approved by:		1	
.pp.20100 07	PRP Group Rep	resentative	
	-		
and I'm	1-1.	1 . 0/1/04.	
accepted by:	1.100	7 -1- 7/1/-7- 7	_
	Contractor	<i>)</i> ''	•

y accepting this Field Order, CONTRACTOR acknowledges that work will be performed for no increase in the contracted amount r extension of the contract schedule.

This document shall become an amendment to the contract and all provisions of the contract will apply hereto.

WRRFOLXLS - 7/12/94

Pg. 1	of _		
ocludin	e Atta	chments	

	7	
NO.	j.	

APPROVED, you are hereby directed to comply with the following changes from the contract plans and specifications.

Tr. 11:11- 11:11	Date: 8-16-99	Design No. 12 mg///
TO: MIKE KILEY	Date: 9-/6-99	Project No.: Z50/46 Owner: WRR NOW CITI
ontract: Weston Job	Work Item Affected: (FATING	
# 10702	MO SITE. Prep.	SETT/ORS
Irom Written Description of Change and		Attachments, References, Affected
Include Affect on Completion Scho		Contract Documents
1. A Zyinch diamer	er slotted corrugated	
polyethylene p.p		design drawing
Substituted to	or that Zyinch	70210017 (0/13).
dIAMETER Slotte	1 corrugated steel	
DIPE IN CONSTR	uction of the	
decontamination	N pads. The	
contractor war	rants that the	
Strength of 7	he corrugated	
polyethylene Dip	is sufficient	
	tion.	
7/		
1		
The time provided for completion in the	contract is (unchanged) (decreased) by	calendar days.
1 10		•
ecommended by: Den Malace	CRY BTM	
<i>F</i> /*	4	,
Engineer Comment: This hele	I order is being MA	de at the
CONTRACTOR'S requ	est.	
		· · · · · · · · · · · · · · · · · · ·
J.S. EPA Review:	/U.S. EPA Attachmen	ts: Yes/No
RPM		
U.S. EPA Comment:		
,	,	
Approved by:	·	·
PRP Group Re	presentative	
. , ,		
Accepted by: Market 1-12	1, 9/1/94	
	~~ ~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Contractor	/	

By accepting this Field Order, CONTRACTOR acknowledges that work will be performed for no increase in the contracted amount or extension of the contract schedule.

This document shall become an amendment to the contract and all provisions of the contract will apply hereto.

WRRFOLXLS - 7/12/94

Pg. 1	of	2	, _
acludia:	z At	كافغمستاعد	

	8	
NO.	0_	

You are hereby requested to comply with the following changes from the contract plans and specifications.

To: Mike Kiley	Date: 8-16-94	Project No.: 230/46
	Work Item Affected:	Owner: WKK NON-CiTy
# 1070Z	FORCEMAIN	Settors
tem Written Description of Change and	Reason	Attachments, References, Affected
No. Include Affect on Completion Sche	dule.	Contract Documents
1. Change the stipe	of the forcemain	Pg. Zo=2 - fable
as shown on	the affached table	detailing meditied
1 0992 ZOEZ. 7	The attached table	Stationers AND
supercedes thas	e change in	Siopes, I HAND
slopes provided	in Field Order	written corrections
#2. These C.	hanges are being	Are INTENTIONAL.
made to correct	for incorrect	
elevations show	n along the right	
	design drawing	
89570-01.		
·		
	•	
Recommended by: See Engineer Comment:	ly 1_57M	
Changes made after	TELEPHONE CONVERSATION	Wirth Jim Gray of
Ayers, Lewis, Norris	2 May W AUGUST 8	1994
U.S. EPA Review:	/U.S. EPA Attachment	ts: Yes / No
U.S. EPA Comment:		
		
Approved by:		
Accepted by: Muled 1 / Contraction	4, 9/1/94	

By accepting this Field Order, CONTRACTOR admostledges that work will be performed for no increase in the contracted amount. This document shall become an amendment to the contract and all provisions of the contract will apply hereto.

WRRFOLXLS 6/30/94

Pg. 1	of _	2
Includin	a Aita	ichments

	A
NO.	7

* u are hereby requested to comply with the following changes from the contract plans and specifications.

: Mike Kiley	Date: 8-16-94	Project No.: Z50/46
ntract: Weston Jos	Work Item Affected:	Owner: WRR NON-City
# 10702	FORCEMAIN	Settlors
m Written Description of Change a	nd Reason	Attachments, References, Affected
. Include Affect on Completion S	chedule.	Contract Documents
1. Marity the de	tail of the air relea	ase REFERENCE
	EF VALVE MANLACIE	design drawing
	the affached figure	89570-07.
Page 2 of Z.	The detail has	
been modified	of the CONTRACTOR'S	
request to an	YOW CONNECTION OF	
the 6" 0/49	VAIVE directly to	
the tee blues		
VAIVE. The deta		·d
	ers reguest to replace	
the Hexible rul	bber of tubing with	
Z" PVC PIDE.	The Z" PVC DIDE	
will direct wa	ter away from	
the VAIVE and		
at the bottom	of the manhale.	
ne time provided for completion in t	he contract is (unchanged) (increased	l) (decreased) by calendar days.
Recommended by: Dan 1921 6	Lady BTH	·
Engineer		•
igineer Comment:		·
ChANGES, MADE, at	ter telephone conver	rsation WITH Jim Gray
Tyers LEWIS NOTTIS	& MACY ON AUGUST 8,	1494.
J.S. EPA Review:	/U.S. EPA Attac	hments: Yes / No
RPM		•
.S. EPA Comment:	<u> </u>	<u> </u>
Approved by:	/	
Owner		
Accepted by Mul-of F	CL 19/1/94	
Contractor	——————————————————————————————————————	

y accepting this Field Order, CONTRACTOR acknowledges that work will be performed for no increase in the contracted amount. I his document shall become an amendment to the contract and all provisions of the contract will apply hereto.

WRRFO1 XLS 6/30/94

	10
MO.	

You are hereby requested to comply with the following changes from the contract plans and specifications.

To: Mike Kiley	Date: 9-14-94	Project No.: 250/46
Contract: Weston Tos	Work Item Affected: Well	Owner: WRR Now - City
# 107:2	Deilling	· Settlers
Item Written Description of Change a		Attachments, References, Affected
No. Include Affect on Completion So	chedule.	Contract Documents
	VE Wells SVEIY,	None
	WO SVE 38	
Shall Not exceed	the depth of	
the vadase (1)	vsaturated) zone.	
The approxima		
	the vadose zove	
<u>,5 8/0.'</u>		
1		
		
1		
	he contract is (unchanged) (increased)	(decreased) by calendar days.
Recommended by: Den 1/26/30	chy SM	•
Engineer Comments 17.	chy 1 8M	1 4 11/1 6
Engineer Comment	MAGE 16 AVOID	The possibility of
through the SVEY	rious mode to avoid cent air sporge were vells.	IS STORT CIPCUITING
U.S. EPA Review:	U.S. EPA Attachm	•
RPM		
U.S. EPA Comment:		
A d box		·
Approved by:	·	
Accepted by: Markon 7	Ny 9/15/94	•
Contractor	TOP columniated and that would not like a sufficient	and for no increase in the contract of the con

By accepting this Field Order, CONTRACTOR acknowledges that work will be performed for no increase in the contracted amount.

This document shall become an ameriment to the contract and all provisions of the contract will apply hereto.

WRRFO1.XLS

6/30/94

	<i>2</i> .	
NO.	18	
1.4 O/	#E	

in are hereby impressed to comply with the following changes from the contract plans and specifications.

: JoE JANKOWSKI	Date: 9/27/94	Project No.: 250/46
intract: WRL RA	Work Item Affected:	Owner: WRL ROIRA
Construction	FORCEMAIN	SETT/ORS
m Written Description of Change an		Attachments, References, Affected
). Include Affect on Completion Sci	hedule.	Contract Documents
AT the CONTRAC.	forts request, the	WESTON SUBMITTAL
method for insi	talling the foremin	No. 103.
- piping accross	the Blue River	
shall be change	red from bore & inck	
to horizental a)
	N the Attached	
	HGB method shall	
	e river crossing	
	AND the river	
- LOSSING Near		
	777	
->		
		_
		<u> </u>
The since presented of for a complete or in sta	and Chickenson Commence (Commence of Commence of Comme	annound have O and and and a second
he time provided for completion in th	e contract is (unchanged) (increased) (d	ecreased) by catendar days.
Sen Sen Sel	selle om	
decommended by	eachy BTM	
neer Commany & =c=o	1 that 1/2 has be	and and he durage
incer comment. 10=37670 Sc	bouthal No. 103 has bee	N TEVIEWED DY MYERS
LEWIS, NECCIS, AND	MAY AND NO EXCE	OTIONS WERE TAKEN.
	/ I'S EDA Association	V.a INa
i.s. EPA Review:	/U.S. EPA Attachmer	HS: 1 25 / 190
RPM		
J. EPA Comment:	<u>,</u>	
·		
•	•	
approved by:	/	
Owner		
epied by: Tre E. Janhour	Li 19-28-99	•
Contractor		•
		· ·

B accepting, this Field Order, CONTRACTOR acknowledges that work will be performed for no increase in the contracted amount.

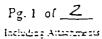
T s document shall become an amendment to the contract and all provisions of the contract will apply hereto.

WRRFOLXIS

6/30/94

	. 7	
\sim \sim	1 Z	
: 10		

u are hereby requested to comply with the following changes from the contract plans and specifications.


Jee JANKOWSKI	Date: 4/27/94	Project No.: 250/46
ntract: WRE LA	Work Item Affected:	Owner: WRR ROJRA
C NSTructiON	WELL INSTALLATION	SETT/ORS
m Written Description of Change	and Reason	Attachments, References, Affected
Include Affect on Completion	Schedule.	Contract Documents
- AT the CONTRA	ctors request, the	Novie
DUATION of G	roundwhter recovery	
_ Well RNS S	hall be moved Approxim	nkx,
- 10ft South ANO	1 25ft west of the	
	ES ShowN N the	
	195 This change	
	E AS the origiNAL	
	15 is iNACCESSIBLE	
to the drill rig	9.	
_		
,		
		
he time provided for completion in	the contract is (unchanged) (increased)	(decreased) by <u>C</u> calendar days.
f 1/5//	2-14	
ecommended by Dec Afriges	STM _	
Engineer		CIPP V
n neer Comment: Revisid	TOCATION CENTENED by	· Cliff YANTZ CT
WARTIN AND NO	e Exceptions were	HILF YANTZ of taken. Levised location rediation system.
Will Not Change	performance of ren	rediation system
,	I'C TD.	
.o. EPA Review:	U.S. EPA Attach	iments: Yes / No
RPM		
. EPA Comment:		
		•
pproved by:		•
•		
epted by: Le E. Contractor	aush: 19-28-94	
Contractor		
ccenting this Field Order CONTRA	CTOR acknowledges that work will be perfo	emed for no increase in the contracted amount

3: cecepting this Field Order, CONTRACTOR acknowledges thint work will be performed for no increase in the contracted amount is document shall become an amendment to the contract and all provisions of the contract will apply hereto.

WRRFOLXLS

. 5/30/94

1900.	3
-------	---

To are hereby requested to comply with the following changes from the contract plans and specifications.

O: MIKE KILEY	Date: 10/9/94	Project No.: 250146
To ract: WER RA	Work Item Affected:	Owner: WRE ROJRA
Construction	WEIL DRILLING	SETT/BAS
tem Written Description of Change and		Attachments, References, Affected
ic Include Affect on Completion Sch	edule.	Contract Decuments
The following wells	have been damaged	Fig 2 c= 2 - WEII
	iction activities:	replacement
	AS AND P3. Wester	details
is directed to inv	estigate EACh well	<u> </u>
- nd to repair o		
- Ach: Nell las regi	ured It repair	
of the maritaring	Well is NOT possible	
1 bandon the Well	according to	
- he procedures out	INED IN TECHNICAL	
SpecificATICALS SECT	ical 2675 As meditied by A	denden #1.
- PEDIACE FACK Ab	andowed well as	
ipecified on the	ATTACHED SHEET.	
(
T -time provided for completion in the	contract is (unchanged) (increased) (de	creased) byO calendar days.
1101		
Recommended by: Sen Habed	chy! BTM	
Zogineër .		
Engineer Comment: Replacem	ENT of monitoring us monitoring of the so	xlls is required to
allow long term	monitoring of the 5	TE.
<u> </u>		
ric Ent o	I'S EDA Association	
U.S. EPA Review:	U.S. EPA Attachment	s: Yes/No
RPM		
U.S. EPA Comment:		
		
-		
A		·
A -proved by:		
- 1 / 15- 1		·
-cepted by: Wholat Time	5 1 10/4/94	
Contractor	11.	
E accepting this Felial Order, CONTRACT	OR using windies that work will be performed	for no increase in the contracted amount.

E. accepting this Field Order, CONTRACTOR reknowledges that work will be performed for no increase in the contracted amount. This document shall become an innerdment to the contract and all provisions of the contract will apply hereto.

WRRFO1 XLS 6/30/94

E

SYSTEM START-UP ANALYTICAL RESULTS

E1 INFLUENT/EFFLUENT WATER SAMPLES

INORGANIC REPORT WAYNE RECLAMATION COLUMBIA CITY IN

Project Number: 3868.0080

DRAFT

				Reporting			Sample	Analysis
Sample #	Description	Test	Result	Limit	Matrix	Units	Date	Date
L 10295-001	PT-INFLUENT-1	Biochemical Oxygen Deband	< 1	1	WasteH20	mg/L	07-MAR-95	09-MAR-95
		Chemical Oxygen Demand	31	20	WasteH20	mg/L	07-MAR-95	13-MAR-95
		Cyanide, Total	< 0.005	0.005	WasteH20	mg/L	07-MAR-95	16-MAR-95
		Mercury	< 0.0002	0.0002	WasteH20	sng/L	07-MAR-95	14-MAR-95
		Nitrogen, Ammonia	1.58	0.10	WasteH20	mg/L	07-MAR-95	14-MAR-95
		Oil and Grease	1	1	WasteN20	mg/L	07-MAR-95	13-MAR-95
		Phenotics, Total	< 0.005	0.005	Was tell20	mg/L	07-MAR-95	15-MAR-95
		Phosphorus, Total	0,83	0.02	VasteH20	mg/L	07-MAR-95	15-MAR-95
		Solids, Total	838	20	Was teH20	mg/L	07-MAR-95	09-MAR-95
		Solids, Total Suspended	21	2	WasteH20	ing/L	07-MAR-95	12-MAR-95
		p₩	7.21	0.01	WasteHZD	s.u.	07-MAR-95	08-MAR-95
L10295-002	PT-EFFLUENT-1	Biochemical Oxygen Demand	< 1	1	WasteH20	09/ L	07-MAR-95	09-MAR-95
		Chemical Oxygen Demand	21	20	WasteH20	ng/L	07-HAR-95	13-MAR-95
		Cyanide, Total	< 0.005	0.005	WasteH20	mg/L	07-MAR-95	16-MAR-95
		Hercury	< 0.0002	0.0002	Wastell20	mg/L	07-MAR-95	14-MAR-95
		Kitrogen, Ammonia	1.55	0.10	WasteH20	mg/L	07-MAR-95	14-MAR-95
		Oil and Grease	< 1	1	Vas teH20	mg/L	07-MAR-95	13-MAR-95
		Phenolics, Total	< 0.005	0.005	WasteH20	mg/L	07-MAR-95	15-MAR-95
		Phosphorus, Total	0.73	0.02	WasteH20	mg/L	07-MAR-95	15-MAR-95
		Solids, Total	830	20	WasteH20	mg/L	07-HAR-95	09-MAR-95
		Solids, Total Suspended	15	2	WasteH20	mg/L	07-MAR-95	12-MAR-95
		pH	8.15	0.01	WasteH20	s.u.	07-MAR-95	08-MAR-95

Footnates		, and the second
Sample #	Test	Footnote
L10295-001	Oil and Greese	A1S

. . .

W1 Lab Certification 10#: 113138300

INORG - 1

Chk'd: App'd: Date App'd:

University Research Park
Une Science Court
Madison, Wisconsin 53711
Tul: 508 231 4/47 - Fax. 608 231 4/77

INORGANIC REPORT WAYNE RECLAMATION COLUMBIA CITY IN Project Number: 3868.0080

				Reporting			5ынр Се	Analysis
Sample #	Description	Test	Rosult	Limit	Metrix	Units	Oute	Date
L10295-001	PT-INFLUENT-1	Arsenic	0.010	0.001	WasteH20	mg/L	07-HAR-95	16-MAH-95
210277 001	ri inicocni i	Servilium	< 0.0002		WasteH20	⊕ g/L		17-MAR-95
		Biochemical Oxygen Demand	< 1	1	_	mg/L		09-MAR-95
		Cadajum	< 0.0002		VasteH20	ing/L		17-MAR-95
		Chemical Oxygen Demand	31		Waster20	æg/L		13-MAR-95
		Chromium, Total	< 0.01		WasteH20	mg/L		16-MAR-95
		Copper	< 0.01		WasteH20	mg/L	07-MAR-95	
		Cysnide, Total	< 0.005		WasteH20	mg/L		16-MAR-95
		Lead	< 0.0015		WasteH20	mg/L	07-MAR-95	
		Hercury	< 0,0002		WasteH20	mg/L	07-MAR-95	14-MAR-95
		Holybdenum	< 0.20		VasteH20	mg/L	07-HAR-95	
		Nickel	0.02		WasteH20	₩g/L	07-MAR-95	16-MAR 95
		Nitrogen, Ammonia	1.58		WasteH20	mq/L	07-MAR-95	14-MAR-95
		Nitrogen, Total Kjeldahl	1.66		VasteH20	mg/L	07-MAR-95	17-MAR 95
		Oll and Grease	1		WasteH20	mg/L	07-HAR-95	13-MAR-95
		Phenolics, Total	< 0.005		WasteH20	eg/L	07-MAR-95	15-MAR-95
		Phosphorus, Total	0.83	0.02	VasteH20	mg/L	07-HAR-95	15-MAR 95
		Potassium	14.4	0.10	WasteH20	mg/L	07-MAR-95	20-MAR-95
		Selenium	< 0.002	0.002	VasteH20	ang/L	07-MAR-95	16-MAH VI
		Silver	< 0.01	0.01	Waste#20	mg/L	07-MAR-95	TO HAM OF
		Solids, Total	838	20	WasteH20	mg/L	Q7 - MAR - Q5	00 MAG 2
		Solids, Total Suspended	21	2	WasteH20	mg/L	07-MAR-95	12-MAR-95
		Zinc	0.03	0.01	VasteH20	mg/L	07-HAR-95	16-MAP 05
		pH	7.21	0.01	WasteH20	S.U.	07 - MAR - 95	08 HAR V.
		•						

Wt Lab Certification 10#: 113138300

INORG - 1

Clik'd: Fe R App'd. CAN Date App'd: 3:23:95

University Research Park One Science Court Madison, Wisconsin 53711 Tel. 608 231 4747 * Fax: 608 231 4777

INORGANIC REPORT MAYNE RECLAMATION COLUMBIA CITY IN Project Number: 3868-0080

		Reporting					Sample	Analysis
Sample # Des	scription	Test	Resul t	Limit	Matrix	Units	Date	Date
L10295-002 PT-	-EFFLUENT-1	Arsenic	0.008	0,001	WasteM20	mg/L	0/-MAR-95	16-MAR-95
[1027] OOZ 71-	ETTEGENT 1	Beryllium	< 0,0002	0.0002	WasteH20	mg/L	07-MAR-95	17-MAR 95
		Biochemical Oxygen Demand	< 1	1	Vasten2C	mg/L	07-MAR-95	09-HAR-45
		Cadelun	< 0.0002	0.0002	WasteH20	mg/L	07-MAR-95	17-MAR-95
		Chemical Oxygen Demand	21	20	WasteH20	mg/L	07 - HAR - 95	13-MAR-95
		Chromium, Total	< 0.01	0.01	WasteM20	mg/l	07-HAR-95	16 MAR 95
	Copper	< 0.01	0.01	WasteH20	mg/L	07-MAR-95	16-MAR 94	
		Cyanide, Total	< 0.005	0.005	WasteM20	mg/L	07-HAR-95	16 MAR 4".
		Lead	< 0.0015	0.0015	Wasten20	mg/L	07-MAR-95	16-MAR 95
		Hercury	< 0.0002	0.0002	WasteH20	mg/L	07-MAR-95	14 -MAR 95
		Molybdenum	< 0.20	0.20	WasteH20	mg/L	07-MAR -95	16-MAR 35
		Nickel	< 0.02	0.02	WasteH20	mg/L	07-MAR-95	16-MAR-95
		Mitrogen, Ammonia	1,35	0.10	Unstell20	mg/L	07-MAR-95	14 - HAR - 9%
		Nitrogen, Total Kjeldahl	1,79	0.10	WasteH20	mg/L	07-MAR-95	17-HAR-95
		Oil and Grease	< 1	1	WasteM20	mg/L	07-MAR-95	13-HAR-95
		Phenolics, Total	< 0.005	0.005	WasteH20	mg/L	D7-MAR-95	15-MAR-95
		Phosphorus, Total	0.73	0.02		mg/L	07-MAR-95	15-MAR-95
		Potassium	14.1	0.10	WasteH20	mg/L	07-MAR-95	20-MAR-95
		Selenium	< 0.002	500.0	WasteH20	mg/L	07-MAR-05	16-MAR 95
		Silver	< 0.01	0.01	WasteH20	mg/L	07-MAR-95	16-HAR-175
		Solida, Total	830	20	UssteH20	mg/L	07-MAR-95	09-MAH-95
		Solids, Total Suspended	15	5	Waster 20	mg/l	07-NAR-95	12-MAR-95
		•		0.01		-	07-MAR-95	16 - MAR - 95
		Zinc	0.02	0.01	WasteH2O	my/L	U/'DAK-7)	(A. WW. O.)

Footnotes

Sample # Test Footnote

A15

WI Lab Certification 10#: 113138300

L10295-001 Oil and Grease

Chkid: Kark Approx 3:2195

INORG - 2

DRAFT

	Sample ID#: INFLUENT					Footpetes:					
	M.W. IDW: 10295-001				Cu	iont IDW: 3868.0080					
	Eatry Serial #:										
Date Analyzed:			3/17/95	2.	3/17/95	3.	4.	Batch#: 35516			
Rerun/Comment		ì		_ 2		_3	4	Logbook/pg#:1946/11p.124			
Waters File ID:		1		_ 2		_ 3	4	_			
Matrix: WATER			Pre	SCLA.	ation: HCl	L	Instrument ID: 1946				
% Solide:			• ∠ •	Salid	te Ref /Res	erh#\					

	Reporting Limit				Final Concentration **	1
Compound	mg/kg	OPD	ug/kg	_D.F.*	ag/b, ug/kg, mg/kg dry weight	Footnote
Benzene	0.005	1.0	5.0	1.0	<1.0	
Bromodichloromethane	0.005	1.0	5.0	1.0	<100	A2
Bromoform	0.005	1.0	5.0	1.0	<1.0	
Bromomethane	0.01	2.0	10	1.0	<2.0	
Carbon tetrachloride	0.005	1.0	5.0	1.0	<1.0	
Chlorobenzene	0.005	1.0	5.0	0.1	<1.0	
Chlorodibromomethane	0.005	1.0	3.0	1.0	<1.0	
Chloroethane	0.01	2.0	10	1.0	<2,0	
2-Chloroethylvinyl ether	0.05	10	50	1.0	<10	
Chloroform	0.005	1.0	5.0	1.0	<100	A2
Chloromethane	0.01	2.0	10	1.0	<2.0	
1,2-Dichlorobenzene	0.005	1.0	5.0	1.0	<1.0	
1,3-Dichlorobenzene	0.005	1.0	5.0	1.0	<1.0	
1,4-Dichlorobenzene	0.005	1.0	5.0	1.0	<1.0	
1,1-Dichloroethane	0.005	1.0	5.0	1.0	4.6	
1,2-Dichloroethane	0.005	0.1	5.0	1.0	1.3	
1,1-Dichloroethene	0.005	1.0	5.0	1.0	1.4	
cis-1,2-Dichloroethene	0.005	1.0	5.0	100	1100	
trans-1,2-Dichloroethene	0.005	1.0	5.0	1.0	7.8	
1,2-Dichloropropane	0.005	1.0	5.0	1.0	<100	A2
cis-1,3-Dichloropropene	0.005	1.0	5.0	1.0	<1.0	
trans-1,3-Dichloropropene	0.005	1.0	5.0	1.0	<1.0	
Ethyl Benzene	0.005	1.0	5.0	1.0	<1.0	
Methylene chloride	0.015	3.0	15	1.0	<3.0	
1,1,2,2-Tetrachloroethane	0.005	1.0	5.0	1.0	<1.0	
Tetrachloroethene	0.005	1.0	5.0	1.0	<1.0	
Toluene	0.005	1.0	5.0	1.0	<1.0	
1,1,1-Trichloroethane	0.005	1.0	5.0	1.0	<1.0	
1,1,2-Trichloroethane	0.005	1.0	3.0	1.0	<1.0	
Trichloroethene	0.005	1.0	5.0	100	170	
Trichlorofluoromethane	0.005	1.0	5.0	1.0	<1.0	
Vinyl chloride	0.005	1.0	5.0	100	180	
m + p-Xylene	0.01	2.0	10	1.0	<2.0	
o-Xylene	0.005	1.0	5.0	1.0	<1.0	
Acrolein	0.5	100	500	1.0	NR	
Acrylonitrile	0.5	100	500	1.0	NR NR	

* Dilysius Factor	NR - Not Required	
·· Consumeration Management	Constitution (\$40) = \$Peak response - A(a D F/B	Where A=Y-barrapic B=Step

Reviewed by: _____/ Approved by: _____/

VOADS.XLS

VOLATILE ORGANICS ANALYSIS DATA SHEET (VOC LIST)

DRAFT

	Sample IDM: EFFLUENI				FOOTBOTES:					
	M.W. fD#: 10295-002				Client ID#: 3868,0080					
	Entry Serial	Entry Serial #:								
Date Analyzed:		1.	3/17/95	2.	3/17/95 3	. 3/	17/95 4	Batch#: 35516		
Rerun/Comment		1		_ 2		3	4	Logbook/pg#:1946/11p.124		
Waters File ID:		1		_ 2		3	4,			
Matrix: WATER	l		Pre	SETV	ation: HCL		Instrument ID: 1946			
% Solids:			% :	Solid	ls Ref. (Batcl	h#):_				

	Re	Reporting Limit			Final Concentration **		
Compound	mg/kg	ug/L	ug/kg	D.F.*	ug/L, ug/kg, mg/kg dry weight	Footnote	
Benzene	0.003	1.0	5.0	1.0	<1.0		
Bromodichloromethane	0.005	1.0	5.0	1.0	<1.0		
Bromoform	0.005	1.0	5.0	1.0	<1.0		
Bromomethane	0.01	2.0	10	1.0	<2.0		
Carbon tetrachloride	0.005	1.0	5.0	1.0	<1.0		
Chlorobenzene	0.005	1.0	5.0	1.0	<1.0		
Chlorodibromomethane	0.005	1.0	5.0	1.0	<1.0		
Chloroethane	0.01	2.0	10	1.0	₹2.0		
2-Chloroethylvinyl ether	0.05	10	50	1.0	<10		
Chloroform	0.005	1.0	5.0	1.0	<1.0		
Chloromethane	0.01	2.0	10	1.0	<2.0		
1,2-Dichlorobenzene	0.005	1.0	5.0	1.0	<1.0		
1,3-Dichlorobenzene	0.005	1.0	5.0	1.0	<1.0		
1,4-Dichlorobenzene	0.005	1.0	5.0	1.0	<1.0		
1,1-Dichloroethane	0.005	1.0	5.0	1.0	<1.0		
1,2-Dichloroethane	0.005	1.0	5.0	1.0	<1.0		
1,1-Dichloroethene	0.005	1.0	5.0	1.0	<1.0		
cis-1,2-Dichloroethene	0.005	1.0	5.0	5.0	45		
trans-1,2-Dichloroethene	0.005	1.0	5.0	1.0	<1.0		
1,2-Dichloropropane	0.005	1.0	5.0	1.0	<1.0		
cis-1,3-Dichloropropene	0.005	1.0	5.0	1.0	<1.0		
trans-1,3-Dichloropropene	0.005	1.0	5.0	1.0	<1.0		
Ethyl Benzene	0.005	1.0	5.0	1.0	<1.0		
Methylene chloride	0.015	3.0	15	1.0	<3.0		
1,1,2,2-Tetrachloroethane	0.005	1.0	5.0	1.0	<1.0		
Tetrachloroethene	0.005	1.0	5.0	1.0	<1.0		
Toluene	0.005	1.0	5.0	1.0	<1.0		
1,1,1-Trichloroethane	0.005	1.0	5.0	1.0	<1.0		
1,1,2-Trichloroethane	0.005	1.0	5.0	1.0	<1.0		
Trichloroethene	0.005	1.0	5.0	1.0	3.4		
Trichlorofluoromethane	0.005	1.0	5.0	1.0	<1.0		
Vinyl chloride	0.005	1.0	5.0	1.0	<1.0		
m + p-Xylene	0.01	2.0	10	1.0	<2.0		
o-Xylene	0.005	1.0	5.0	1.0	<1.0		
Acrolein	0.5	100	500	1.0	NR		
Acrylonitrile	0.5	100	500	1.0	NR		

Diffusion Proper	162 - Max Bequired

** Consumption Squaries — Consumption (1985) — (Push response - A) to D F/ S

Where A = Y-brestopt, B = Fep-

Coks.bri.	4112	17	95
Cale livi	2011.2 .	4	-

eviewed by:/	/_	Approved 1	by:	

INORGANIC REPORT MATRE RECLARATION ADMINISTR CITY IN

Project Number: 3868.0080

				Reporting			Sample	Analysis
Sample #	Description	Test	Result	Limit	Matrix	Units	Date	Date

L10420-001	PT-EFFLUENT-2	Alkalinity, Total	485	10	WasteH20	ing/L	28-MAR-95	04-APR-95
		Arsenic	0.005		WasteH20	mg/L	28-MAR-95	04-APR-95
		Chemical Oxygen Demand	31	20	WasteH20	mg/L	28-MAR-95	31-MAR-95
		Cyanide, Total	< 0.005	0.005	WasteH20	rog/L	28-MAR-95	30-MAR-95
		Hercury	< 0.0002	0.0002	WasteH20	mg/L	28-HAR-95	04-APR-95
		Oil and Grease	< 1	1	Wastell 20	mg/L	28-MAR-95	30-MAR-95
		Phenolics, Total	< 0.005	0.005	WasteH20	mg/L	28-MAR-95	31-MAR-95
		Phosphorus, Dissolved	0.55	0.02	USH9126W	eng∕L	28-MAR-95	31-MAR-95
		Phosphorus, Total	1.14	0.02	WasteH20	mg/L	28-MAR-95	31-MAR-95
		Selenium	< 0.002	0.002	WasteH20	iog/L	28-MAR-95	05-APR-95
		Silver	< 0.01	0.01	WasteH2O	mg/L	28-MAR-95	05-APR-95
		Solids, Total	882	20	WasteH20	mg/L	28-MAR-95	31-MAR-95
		Solids, Total Suspended	15	2	WasteH20	mg/L	28-MAR-95	04-apr-95
		Sulfate	146	10	WasteH20	mg/L	28-MAR-95	05-APR-95
		рĦ	8.04	0.01	VesteH20	s.v.	28-MAR-95	29-MAR-95
L10420-002	PT-INFLUENT-2	Alkalinity, Total	488	10	WasteH20	mg/L	28-MAR-95	04-APR-95
		Arsenic	0.008	0.001	UasteH20	mg/L	28-MAR-95	04-APR-95
		Chemical Oxygen Demand	28	20	VesteH20	mg/L	28-MAR-95	31-MAR-95
		Cyanide, Total	< 0.005	0.005	WasteH20	ng/L	28-MAR-95	30-MAR-95
		Mercury	< 0.0002	0.0002	WasteH20	mg/L	28-HAR-95	04-APR-95
		Oil and Grease	< 1	1	VasteH20	mg/L	28-MAR-95	30-HAR-95
		Phenolics, Total	< 0.005	0.005	WasteH20	mg/L	28-MAR-95	31-MAR-95
		Phosphorus, Dissolved	0.71	0.02	WasteH20	mg/L	28-MAR-95	31-MAR-95
		Phosphorus, Total	1.25	0.02	OSHe 186W	tng/L	28-MAR-95	31-MAR-95
		Selenium	< 0.002	0.002	WasteH20	mg/L	28-MAR-95	05-APR-95
		Silver '	< 0.01	0.01	WasteH20	mg/L	28-MAR-95	05-APR-95
		Solids, Total	884	20	WasteH20	mg/L	28-MAR-95	31-MAR-95
		Solids, Total Suspended	13	2	UasteH20	mg/L	28-MAR-95	04-APR-95
		Sulfate	152	10	WasteH20	mg/L	28-MAR-95	05-APR-95
		PH	7.02	0.01	WasteH20	s.u.	28-MAR-95	29-MAR-95

Chk'd:

App'd:

WI Lab Certification ID#: 113138300

Date App'd:

PCB REPORT WATER RECLAMATION COLOMBIA CITY IN Project Number: 3868.0080

					Reporting			
Sample #	Description	Compound		Result	Limit	Matrix	Units	Footnotes
				•••••	•••••	*******		
L10420-001	PT-EFFLUENT-2	PCB-1016		< 0.50	0.50	Wastell20	V9/L	
		PCB-1221		< 1.0	1.0	WasteHZ0	ug/L	
		PC8-1232		< 1.0	1.0	WasteH20	ug/L	
		PCB-1242		< 0.50	0.50	WasteH20	ug/L	
		PC8-1248		< 0.50	0.50	WasteHZ0	Ug/L	
		PC8-1254		< 1.0	1.0	WasteH20	ug/L	
		PCB-1260		< 1.0	1.0	VasteH20	ug/L	
		Sample Date:	28-MAR-9	5				
		Extract Date:	03-APR-9	5				
		Analysis Date:	04-APR-9	5				
L10420-002	PT-1NFLUENT-2	PCB-1016		< 0.50	0.50	Wasten20	Ug/L	
		PCB-1221		< 1.0	1.0	Was teH20	ug/L	
		PC8-1232		< 1.0	1.0	WesteH20	ug/L	
		PCB-1242		< 0.50	0.50	WasteH20	ug/L	
		PCB-1248		< 0.50	0.50	WasteH20	ug/L	
		PCB-1254		< 1.0	1.0	Vastell20	ug/L	
		PCB-1260		< 1.0	1.0	WasteH20	U9/L	

Sample Date: Extract Date: 28-MAR-95 03-APR-95 Analysis Date: 04-APR-95

Chk'd: App'd:

WI Lab Certification 10#: 113138300

Date App'd:

VOLATILE ORGANIC REPORT MAYNE RECLAMATION COLUMBIA CITY LI Prospect Number: 3868.0080

				Reporting			
Sample #	Description	Compound	Result	Limit	Matrix	Units	Footnotes
1 104 20 - 002	PT-INFLUENT-2	Benzene	< 1.0	1.0	WasteH20	Ug/L	
[10420-002	PI-INILOUNI E	Bromodichloromethane	< 1.0		WasteH20	ug/L	
		Bromoform	< 1.0		WasteH20	Ug/L	A17
		Brosomethane	< 2.0		OSHetacu	Ug/L	~''
		Carbon tetrachloride	< 1.0		WasteH20	ug/L	
		Chlorobenzene	< 1.0		WasteH20	ug/L	
		Chlorodibromomethane	< 1.0		WasteH20	U9/L	A17
		Chloroethane	< 2.0		WasteH20	Ug/L	
		2-Chloroethyl vinyl ether	< 10		VasteH20	-g/L	A17
		Chloroform	< 3.0		WasteH20	ug/L	A2
		Chloromethane	< 2.0	2.0	WasteH2D	Ug/L	
		1,2-Dichlorobenzene	< 1.0	1.0	VasteH20	ug/L	
		1,3-Dichlorobenzene	< 1.0	1.0	WasteH20	Ug/L	
		1,4-Dichlorobenzene	< 1.0	1.0	VasteH20	Ug/L	
		1,1-Dichloroethane	< 1.0	1.0	WasteH20	ug/L	
		1,2-Dichloroethane	< 1.0	1.0	WasteM20	ug/L	
		1,1-Dichloroethene	< 1.0	1.0	WasteH20	Ug/L	
		cis-1,2-Dichloroethene	890	1.0	WasteH20	ug/L	
		trans-1,2-Dichloroethene	25	1.0	WasteH20	ug/L	
		1,2-Dichloropropane	< 1.0	1.0	WasteH20	ug/L	
		cis-1,3-Dichloropropene	< 1.0	1.0	WasteH20	ug/L	
		trans-1,3-Dichloropropene	< 1.0	1.0	MasteH20	ug/L	
		Ethylbenzene	< 1.0	1.0	WasteH20	ug/L	
		Methylene chloride	< 3.0	3.0	WasteN20	ug/L	
		1,1,2,2-Tetrachloroethane	< 1.0	1.0	WasteH2O	ug/L	
		Tetrachloroethene	< 1.0	1.0	VasteH20	ug/L	
		Toluene	< 1.0	1.0	WasteH20	Ug/L	
		1,1,1-Trichloroethane	< 1.0	1,0	VacteH20	ug/L	
		1,1,2-Trichloroethañe	< 1.0	1.0	WasteH20	ug/L	
		Trichloroeth ene	82	1.0	WasteH20	ug/L	
		Trichlorofluoromethane	< 1.0	1.0	VasteH20	ug/L	
		Vinyt chloride	300	1.0	WesteH20	ug/L	
		m + p-Xylene	< 2.0	2.0	VasteH20	ug/L	
		o-Xylene	< 1.0	1.0	WasteH2O	ug/L	

 Sample Date:
 28-MAR-95

 Analysis Date:
 31-MAR-95, 05-APR-95

Chk'd:

App'd:

Date App/d:

WI Lab Certification ID#: 113138300

للمجال أحمد المعينا بمعهد فينهن فأداد الأدار الأدارين

VOC - 2

VOLATILE ORGANIC REPORT UNITE RECLAMATION COLUMBIA CITY IN Project Number: 3868.0080

Reporting Liait Result Matrix Units Sample # Description Compound Footnotes < 1.0 1.0 WasteH20 L10420-001 PT-EFFLUENT-2 ug/L Benzene ug/L Bromodichloromethane < 1.0 1.0 WasteH20 < 1.0 1.0 WasteH2D **∪g/**L A17 Bromoform < 2.0 2.0 WasteH20 Bromomethane ug/L Carbon tetrachloride < 1.0 1.0 WasteH20 ug/L < 1.0 Chlorobenzene 1.0 WasteH20 Ug/L < 1.0 1.0 WasteH20 ug/L A17 Chlorodibromomethane 2.0 WasteH20 < 2.0 Chloroethane ug/L 2-Chloroethyl vinyl ether < 10 10 WasteW20 ug/L A17 < 1.0 1.0 WasteH20 ug/L Chloroform < 2.0 2.0 WasteH20 Ug/L Chloromethane < 1.0 1.0 VesteH20 ug/L 1,2-Dichlorobenzene 1,3-Dichlorobenzene < 1.0 1.0 WasteH20 ug/L 1,4-Dichlorobenzene < 1.0 1.0 WasteH2D ug/L < 1.0 1.0 VasteH20 ug/L 1,1-Dichloroethene < 1.0 1.0 WasteH20 1,2-Dichloroethane ug/L 1.0 WasteH20 < 1.0 1,1-Dichloroethene Ug/L 31 1.0 WasteH20 ug/L G1 cis-1,2-Dichloroethene < 1.0 1.0 VasteH20 ug/L trans-1,2-Dichloroethene < 1.0 1.0 WasteH20 1,2-Dichloropropane ug/L < 1.0 1.0 Wasten20 cis-1,3-Dichloropropene ug/L trans-1,3-Dichloropropene < 1.0 1.0 WasteH20 ug/L < 1.0 1.0 WasteH20 ug/L Ethylbenzenc < 3.0 3.0 WasteH20 Methylene chloride ug/L < 1.0 1.0 WasteH20 1,1,2,2-Tetrachloroethane Ug/L < 1.0 1.0 WasteH20 ug/L Tetrachloroethene < 1.0 1.0 WasteN20 ug/L Taluene < 1.0 1.0 WasteH20 ug/L 1,1,1-Trichtoroethane 1.0 WasteH20 < 1.0 1,1,2-Trichloroethane ug/L Trichloroethene 2.4 1.0 WasteH20 ug/L < 1.0 1.0 WasteH20 ug/L Trichlorofluoromethene < 1.0 1.0 WasteH20 ug/L Vinyl chloride 2.0 WasteH20 ug/L < 2.0 m + p-Xylene < 1.0 1.0 WasteH20 ug/L o-Xylene

Sample Date:

28-MAR-95

Analysis Date:

31-MAR-95, 05-APR-95

Chk'd:

App'd:

WI Lab Certification ID#: 113138300

Date App'd:

VOC - 1

E2

INFLUENT/EFFLUENT AIR SAMPLES

Volatile organics by GCMS - EPA TO14

Client Name: Montgomery Watson

Client ID: AT-IN1

Lab ID: 110531-0001-8A
Matrix: AIR
Authorized: 08 MAR 95 Received: 08 HAR 95 Analyzed: 17 HAR 95 Sampled: 07 MAR 95 Prepared: NA

		1	Reporting
Parameter	Result	Unite	Limit
Dichlorodifluoromethane	MD	ppb (v/v)	670
Chloromethane	CTM	ppb (v/v)	1300
1,2-Dichloro-1,1,2,2-			
tetrafluoroethane	ND	ppb (v/v)	670
Vinyl chloride	1900	ppb (v/v)	670
Bromomethane	MD	ppb (v/v)	670
Chloroethane	ND	bbp (A/A)	1300
Trichlorofluoromethane	MD	ppb (v/v)	670
1,1-Dichloroethene	MD	ppb (V/V)	670
Carbon disulfide	₩D	ppb (v/v)	3400
1,1,2-Trichloro-1,2,2-			
trifluoroethane	ND	ppb (a/a)	670
Acetone	MD	bbp (A/A)	3400
Methylene chloride	MD	ppb (v/v)	670
trans-1,2-Dichloroethene	1600	ppb (v/v)	670
1,1-Dichloroethans	MD	ppb (v/v)	670
Vinyl acetate	MD	ppb (V/V)	3400
cis-1,2-Dichlorosthene	40000	ppb (v/v)	670
2-Butanone	MD	ppb (v/v)	3400
Chloroform	MD	ppb (v/v)	670
1,1,1-Trichloroethane	7300	ppb (v/v)	670
Carbon tetrachloride	ND	ppb (v/v)	670
Benzene	MD	ppb (v/v)	670
1,2-Dichloroethane	MD	ppb (v/v)	670
Trichloroethene	28000	ppb (v/v)	670
1,2-Dichloropropane	MD	ppb (v/v)	670
Bromodichloromethane	MD	ppb (v/v)	670
cis-1,3-Dichloropropene	MD	ppb (v/v)	670
4-Methyl-2-pentanone	ND	ppb (v/v)	1300
Toluene	1100	ppb (v/v)	670
trans-1,3-Dichloropropens	MD	ppb (v/v)	670
1,1,2-Trichloroethane	ND	ppb (∀/ ∀)	670
Tetrachloroethene	3400	ppb (v/v)	670
2-Hexanone	MD	ppb (v/v)	1300
Dibromochloromethane	ND	ppb (∀/∀)	670
1,2-Dibromoethane (EDB)	ND	ppb (v/v)	670
Chlorobenzene	MD	ppb (v/v)	670
Ethylbenzene	MD	ppb (V/V)	670
Xylenes (total)	ND	ppb (v/v)	670
Styrena	MD	ppb (v/v)	670
Bromoform	MD	ppb (v/v)	670

(continued on following page)

للمستسبق وليدان المعق وهيارة الرازات الأراز والمراز

ND - Not detected NA = Not applicable

Reported By: Jason Men

Accordance to the

Approved By: Dave Olson

Foliatible Organics by GCMS - EPA TO14 (CONT.)

Client Name: Montgomery Watson Client ID: AT-IW1 Lab ID: 110531-0001-SA

AIR Received: 08 MAR 95 Matrix: Sampled: 07 KAR 95 Authorized: 08 MAR 95 Prepared: KA Analyzed: 17 MAR 95

Parameter	Result	Units	Reporting Limit
1,1,2,2-Tetrachloroethane	MD	ppb (v/v)	670
4-Ethyl toluene	ND	ppb (▼/∀)	670
1,3,5-Trimethylbenzene	MD	ppb (v/v)	670
1,2,4-Trimethylbenzene	MD	ppb (v/v)	670
1,3-Dichlorobenzene	MD	ppb (v/v)	670
1,4-Dichlorobenzene	ND	ppb (v/v)	670
1,2-Dichlorobenzene	ND	ppb (Y/Y)	670
1,2,4-Trichlorobenzene	MD	ppb (v/v)	1300
Hexachlorobutadiene	ND	ppb (▼/v)	1300

ND = Not detected NA = Not applicable

Reported By: Jason Men

Approved By: Dave Olson

Worlecile Organics by GCHS - EPA TO14

Client Name: Montgomery Watson

Client ID: AT-EFF1

Lab ID: 110531-0002-SA Matrix: AIR Authorized: 08 MAR 95 Received: 08 MAR 95 Sampled: 07 MAR 95 Analyzed: 17 MAR 95 Prepared: NA

			Reporting
Parameter	Result	Units	Limit
Dichlorodifluoromethana	MD	ppb (a/a)	11
Chloromethane	ND	ppb (v/v)	22
1,2-Dichloro-1,1,2,2-			
tetrafluoroethane	ND	ppb (v/v)	11
Vinyl chloride	1300	bbp (A\A)	11
Bromomethane	ND	ppb (v/v)	11
Chloroethana	ND	bbp (a/a)	22
Trichlorofluoromethane	ND	ppb (√/v)	11
1,1-Dichloroethene	34	ppb (▼/v)	11
Carbon disulfide	ND	bbp (a/a)	56
1,1,2-Trichloro-1,2,2-			
trifluoroethane	ND	DDp (A\A)	
Acetona	ND	ppb (v/v)	
Methylane chloride	ND	ppb (v/v)	
trans-1,2-Dichloroethene	150	ppb (v/v)	
1,1-Dichloroethane	30	ppb (v/v)	
Vinyl acetate	MD	ppb (v/v)	
cis-1,2-Dichloroethene	1900	ppb (v /v)	11
2-Butanone	ND	ppb (v/v)	56
Chloroform	ND	ppb (v/v)	11
1,1,1-Trichloroethane	260	ppb (v/v)	11
Carbon tetrachloride	ND	ppb (v/v)	11
Benzana -	MD	ppb (a\a)	11
1,2-Dichloroethane	MD	ppb (v/v)	11
Trichloroethene	830	ppb (v/v)	11
1,2-Dichloropropane	ND	ppb (v/v)	11
Browodichloromethane	ND	ppb (a/a)	11
cis-1,3-Dichloropropens	ND	ppb (v/v)	11
4-Mathyl-2-pentanone	MD	ppb (v/v)	22
Toluene	22	ppb (∀/∀)	11
trans-1,3-Dichloropropens	ND	ppb (v/v)	11
1,1,2-Trichloroethane	ND	ppb (v/v)	11
Tetrachloroethene	64	ppb (v/v)	11
2-Hexanons	MD	ppb (v/v)	22
Dibromochloromethane	ND	ppb (∀/∀)	11
1,2-Dibromoethane (EDB)	MD	ppb (v/v)	11
Chlorobenzene	ND	ppb (v/v)	11
Ethylbenzene	ND	ppb (v/v)	
Xylenes (total)	ND	ppb (v/v)	
Styrene	ND	ppb (v/v)	
Bromoform	MD	ppb (v/v)	11

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Jason Men

Client Name: Montgomery Watson

Client ID: AT-EPF1

Lab ID: 110531-0002-5A

Hatrix: AIR Sampled: 07 MAR 95 Received: 08 MAR 95 Authorized: 08 MAR 95 Prepared: NA Analyzed: 17 MAR 95

Parameter	Result	Unite	Reporting Limit
1,1,2,2-Tetrachloroethane	MD	ppb (v/v) 11
4-Ethyl toluene	MO	ppb (v/v) 11
1,3,5-Trimethylbenzene	ND	ppb (v/v) 11
1,2,4-Trimethylbenzene	ND	ppb (v/v	11
1,3-Dichlorobenzene	MD	ppb (v/v) 11
1,4-Dichlorobenzene	מאל	ppb (v/v) 11
1,2-Dichlorobenzepa	ND	ppb (v/v) 11
1,2,4-Trichlorobenzene	ND	ppb (v/v) 22
Hexachlorobutadiene	ND	ppb (v/v) 22

ND = Not detected NA = Not applicable

Reported By: Jason Men

Volatile Organics by GCMS - EPR T014

Client Rems Montgemery Metmon

Client ID: AT-IN2

Lab ID: 110602-0001-SA

Matrix: AIR Sampled: 09 MAR 95 Received: 10 MAR 95
Authorized: 10 MAR 95 Prepared: NA Analyzed: 21 MAR 95

			tmporting
Parameter	Result	Units	Limit
Dichlorodifluoromethane	ND	ppb (v/v)	340
Chloromethane	ND	ppb (v/v)	670
1,2-Dichloro-1,1,2,2-			
tetrafluoroethane	ND	ppb (v/v)	340
Vinyl chlorids	1500	ppb (v/v)	340
Bromomethane	ND	ppb (Y/Y)	340
Chloroethane	ND	ppb (v/v)	670
Trichlorofluoromethane	ND	ppb(v/v)	340
1,1-Dichloroethene	ND	ppb (v/v)	340
Carbon disulfide	ND	ppb (v/v)	1700
1,1,2-Trichloro-1,2,2-			
trifluoroethane	ND	ppb (v/v)	340
Acetone	ND	ppb (v/v)	1700
Methylene chloride	ND	ppb (v/v)	340
trans-1,2-Dichloroethene	1600	ppb (v/v)	340
1,1-Dichloroethane	550	ppb (v/v)	340
Vinyl acetate	ND	ppb (v/v)	1700
cis-1,2-Dichloroethene	35000	ppb (v/v)	340
2-Butanone	ND	ppb (v/v)	1700
Chloroform	ND	ppb (v/v)	340
1,1,1-Trichloroethane	6000	ppb (v/v)	340
Carbon tetrachloride	ND	ppb (v/v)	340
Benzene	ND	ppb (v/v)	340
1,2-Dichloroethane	ND	ppb (v/v)	340
Trichlorosthens	34000	ppb (a/a)	340
1,2-Dichloropropene	ND	ppb (v/v)	340
Bromodichloromethane	ND	ppb (v/v)	340
cis-1,3-Dichloropropene	ND	ppb (v/v)	340
4-Methyl-2-pentanone	ND	ppb (v/v)	670
Toluene	1900	ppb (v/v)	340
trans-1,3-Dichloropropene	nd	ppb (v/v)	340
1,1,2-Trichloroethane	MD	ppb (v/v)	340
Tetrachloroethene	2300	ppb (v/v)	340
2-Hexanone	ND	ppb (v/v)	670
Dibromochloromethane	ND	ppb (v/v)	340
1,2-Dibromoethane (EDB)	ND	bbp (A/A)	340
Chlorobenzene	ND	bbp (a/a)	340
Ethylbenzene	ND	bbp (a/a)	340
Xylenes (total)	ND	ppb (v/v)	340
Styrene	ND	ppb (v/v)	340
Bromoform	ND	ppb (v/v)	340

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Dave Olson

Client Names Assignmenty Weison Client IV: AT-IN2 Lab ID: 110602-0001-6A

λÎR Matrix: Authorized: 10 MAR 95

Sampled: 09 MAR 95 Prepared: NA

Received: 10 HAR 95

Analyzed: 21 MAR 95

Parameter	Result	Units	Reporting Limit
1,1,2,2-Tetrachloroethane	ND	ppb (v/v)	340
4-Ethyl toluene	ND	ppb (v/v)	340
1,3,5-Trimethylbenzene	ND	ppb (v/v)	340
1,2,4-Trimethylbenzene	ND	ppb (v/v)	340
1,3-Dichlorobensene	ND	ppb (Y/Y)	340
1,4-Dichlorobensens	ND	ppb (v/v)	340
1,2-Dichlorobenzene	מא	ppb (v/v)	340
1,2,4-Trichlorobenzene	ND	ppb (v/v)	670
Hexachlorobutadiene	ND	ppb (v/v)	670

ND = Not detected NA = Not applicable

Reported By: Dave Olson

Services

Volatile Organics by GCHS - EPA TO14

Client Namer Honogomery Wetsom

Client ID: AT-BFF2

110602-0002-8A Lab ID:

Received: 10 MAR 95 Sampled: 09 MAR 95 Matrix: AIR Analyzed: 21 HAR 95 Authorized: 10 MAR 95 Prepared: NA

Parameter	Result	Units	Reporting Limit
Dichlorodifluoromethane	NID	ppb (v/v)	17
Chloromethane	ND	ppb (v/v)	34
1,2-Dichloro-1,1,2,2-			
tetrafluorosthane	ND	ppb (v/v	
Vinyl chloride	3700	bbp (A/A	
Bromomethane	ND	ppb (v/v	
Chlorosthans	ND	ppb (v/v)	34
Trichlorofluoromethane	ND	ppb (v/v	17
1,1-Dichloroethene	58	ppb (v/v)	17
Carbon disulfide	nd	ppb (v/v	84
1,1,2-Trichloro-1,2,2-		•	
trifluoroethane	ND	bbp (a/a	
Acetone	ND	bbp (a/a	84
Methylene chloride	ND	ppb (v/v) 17
trans-1,2-Dichlorosthens	160	ppb (v/v) 17
1,1-Dichloroethans	25	ppb (v/v	17
Vinyl acetate	ND	ppb (v/v	84
cis-1,2-Dichloroethene	1300	ppb (v/v	17
2-Butanone	ND	ppb (v/v	84
Chloroform	ND	ppb (v/v	17
1,1,1-Trichloroethane	94	ppb (v/v	17
Carbon tetrachloride	ND	ppb (v/v) 17
Benzene	ND	ppb (v/v) 17
1,2-Dichloroethane	ND	ppb (v/v) 17
Trichloroethene	170	ppb (v/v	17
1,2-Dichloropropane	ND	ppb (v/v) 17
Bromodichloromethane	ND	ppb (v/v	17
cis-1,3-Dichloropropens	ND	ppb (v/v) 17
4-Methyl-2-pentanone	ND	ppb (v/v	34
Toluene	ND	ppb (v/v	17
trans-1,3-Dichloropropens	ND	ppb (v/v) 17
1,1,2-Trichloroethane	ND	ppb (v/v	17
Tetrachloroethene	מא	ppb (v/v	37
2-Hexanone	ND	ppb (v/v	34
Dibromochloromethane	מא	ppb (v/v) 17
1,2-Dibromoethane (EDB)	ND	ppb (v/v) 17
Chlorobensene	ND	ppb (v/v) 17
Ethylbenzene	ND	ppb (v/v) 17
Xylenes (total)	ND	ppb (v/v) 17
Styrene	ND	ppb (v/v) 17
Bromoform	ND	ppb (v/v) 17

(continued on following page)

ND - Not detected NA - Not applicable

Reported By: Dave Olson

Client Names Hentgommery Westeron

Climit IDv AT-RFF2 Lab ID: 110602-0002-SA

Matrix: AIR Sampled: 09 MAR 95 Received: 10 MAR 95 Analyzed: 21 MAR 95 Authorized: 10 MAR 95 Prepared: NA

			Reporting
Parameter	Result	Units	Limit
1,1,2,2-Tetrachloroethane	ND	ppb (v/v)) 17
4-Ethyl toluene	ND	ppb (v/v) 17
1,3,5-Trimethylbenzene	ND	ppb (v/v) 17
1,2,4-Trimethylbenzene	ND	ppb (v/v) 17
1,3-Dichlorobensens	מא	ppb (Y/Y) 17
1,4-Dichlorobensene	ND	ppb (v/v) 17
1,2-Dichlorobenzene	ND	ppb (v/v) 17
1,2,4-Trichlorobenzene	ND	ppb (v/v) 34
Hexachlorobutadiana	ND	ppb (v/v) 34

ND - Not detected NA = Not applicable

Reported By: Dave Olson

Volatile Organics by GCMS - EPA TO14

Client Hemer Montgomery Meterom Client ID: 9317BB AT-IN-3 Lab ID: 110870-0001-8A

Natrix: AIR Sampled: 28 MAR 95 Received: 29 MAR 95 Authorized: 29 MAR 95 Prepared: NA Analyzed: 01 APR 95

Parameter	Result	Units	Reporting Limit
Dichlorodifluoromethane	ND	ppb (v/v)	210
Chloromethane	ND	ppb (a/a)	420
1,2-Dichloro-1,1,2,2-			
tetrafluoroethane	ND	ppb (v/v)	210
Vinyl chloride	1400	ppb (v/v)	210
Bronomethane	ND	ppb (v/v)	210
Chloroethane	ND	ppb (v/v)	420
Trichlorofluoromethane	ND	ppb (v/v)	210
1,1-Dichloroethens	ND	ppb (v/v)	210
Carbon disulfide	ND	ppb (v/v)	1100
1,1,2-Trichloro-1,2,2-			
trifluoroethane	ND	ppb (v/v)	
Acetone	D	ppb (v/v)	
Methylene chloride	ND	ppb (v/v)	210
trans-1,2-Dichloroethene	490	ppb (v/v)	210
1,1-Dichlorosthans	280	ppb (v/v)	210
Vinyl acetate	ND	ppb (v/v)	1100
cis-1,2-Dichlorosthens	8700	ppb (v/v)	210
2-Butanone	ИД	ppb (v/v)	1100
Chloroform	ND	ppb (v/v)	210
1,1,1-Trichloroethane	3500	ppb (v/v)	210
Carbon tetrachloride	MD	ppb (v/v)	210
Benzene	ND	ppb (v/v)	210
1,2-Dichloroethane	ND	ppb (v/v)	210
Trichloroethene	14000	ppb (v/v)	
1,2-Dichloropropane	ND	ppb (v/v)	210
Bromodichloromethane	ND	ppb (v/v)	210
cis-1,3-Dichloropropens	ND	ppb (v/v)	210
4-Methy1-2-pentanone	מא	ppb (Y/Y)	
Toluene	950	ppb (v/v)	210
trans-1,3-Dichloropropene	ND	ppb (v/v)	210
1,1,2-Trichloroethane	ND	ppb (v/v)	210
Tetrachloroethene	2400 .	ppb (v/v)	210
2-Hexanone	ND	ppb (v/v)	420
Dibromochloromethana	ND	ppb (v/v)	210
1,2-Dibromoethane (EDB)	ND	ppb (v/v)	210
Chlorobenzena	ND	ppb (v/v)	210
Ethylbensene	ND	ppb (v/v)	210
Xylenes (total)	מא	ppb (v/v)	210
Styrene	ND	ppb (Y/Y)	210
Bromoform	ND	ppb (v/v)	210

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Jason Men

Client Name: Management Matson Client DD: 930/88 AT-DB-B Leb D: 110870-0001-68

Matrix: AIR Sampled: 28 MAR 95 Received: 29 MAR 95 Authorized: 29 MAR 95 Prepared: NA Analyzed: 01 APR 95

Parameter	Result	Unita	Reporting Limit
1,1,2,2-Tetrachloroethane	MD	ppb (v/v)	210
Benzyl chloride	ND	ppb (Y/Y)	210
4-Ethyl toluene	ND	ppb (Y/Y)	210
1,3,5-Trimethylbensene	MD	ppb (*/*)	210
1,2,4-Trimethylbensene	MID	ppb (Y/Y)	210
1,3-Dichlorobenzene	ND	ppb (*/*)	210
1,4-Dichlorobenzene	MD	ppb (v/v)	210
1,2-Dichlorobenzene	ND	ppb (v/v)	210
1,2,4-Trichlorobensene	ND	ppb (v/v)	420
Hexachlorobutadiene	ND	ppb (v/v)	420

ND = Not detected NA = Not applicable

Reported By: Jason Men

Volatile Organics by GCMS - EPR TO14

Client Hamer Abntyowery Machaun Client ID: A-131 AT-SFF-B Lab ID: 110870-0002-8A

Matrix: AIR Sampled: 28 MAR 95 Received: 29 MAR 95 Authorized: 29 MAR 95 Prepared: NA Analyzed: 01 APR 95

			Reporting
Parameter	Result	Units	Limit
			_
Dichlorodifluoromethane	MD	ppb (a/a)	
Chloromethane	MD	ppb (v/v)) 34
1,2-Dichloro-1,1,2,2-			
tetrafluoroethana	MD	ppb (v/v)	
Vinyl chlorids	1200	ppb (v/v)	
Bromomethane	MD	bbp (a\a	
Chloroethane	MID	ppb (v/v	
Trichlorofluoromethane	MD	ppb (v/v)	
1,1-Dichloroethene	110	ppb (v/v)	
Carbon disulfide	MD	ppb (v/v)	84
1,1,2-Trichloro-1,2,2-			
trifluoroethane	ND	ppb (v/v)) 17
Acetone	ND	ppb (Y/Y	84
Methylene chloride	MD	ppb (v/v	17
trans-1,2-Dichloroethene	200	ppb (v/v	
1,1-Dichloroethane	40	ppb (v/v)	
Vinyl acetate	MD	ppb (v/v	84
cis-1,2-Dichlorosthens	1500	ppb (v/v	17
2-Butanone	ND	ppb (Y/Y	
Chloroform	ND	ppb (Y/Y	17
1,1,1-Trichloroethane	120	ppb (v/v)	17
Carbon tetrachloride	ND	ppb (Y/Y	17
Benzene	ND	ppb (v/v	17
1,2-Dichloroethane	MD	ppb (v/v	
Trichloroethene	180	ppb (v/v	17
1,2-Dichloropropane	ND	ppb (v/v	17
Bromodichloromethane	ND	ppb (v/v	/
cis-1,3-Dichloropropene	ND	ppb (v/v	,
4-Methyl-2-pentanone	ND	ppb (v/v	
Toluene	ND	ppb (v/v	•
trans-1,3-Dichloropropene	ND	ppb (v/v	•
1.1.2-Trichloroethane	ND	ppb (v/v	
Tetrachloroethene	ND	ppb (v/v	
2-Hexanone	MD	ppb (v/v	
Dibromochloromethane	ND	ppb (v/v	
1.2-Dibromoethane (EDB)	ND	ppb (v/v	
Chlorobenzene	MD	ppb (v/v	,
Rthylbenzene	KD	DDP (A\A	,
Xylenes (total)	MD	ppb (Y/V	,
Styrene	ND	ppb (v/v	_
Bromoform	MD	ppb (Y/V	
	91L	KW- (*/*	, .,

(continued on following page)

ND - Not detected NA - Not applicable

Reported By: Jason Men

Client Mane: Montgomery Wetsern Client Man A-131 MT-SFF-B Lab LT: 110870-0002-SA Matrix: AIR

Sampled: 28 MAR 95 Received: 29 MAR 95 Analyzed: 01 APR 95 Authorized: 29 MAR 95 Prepared: NA

Parameter	Result	Units	Reporting Limit
1,1,2,2-Tetrachloroethane	ND	ppb (v/v)) 17
Benzyl chloride	ND	ppb (v/v) 17
4-Ethyl toluene	ND	ppb (v/v)) 17
1,3,5-Trimethylbensene	ND	ppb (v/v)) 17
1,2,4-Trimethylbensene	ND	ppb (v/v	17
1,3-Dichlorobensene	ND	ppb (Y/V)	17
1,4-Dichlorobenzene	ND	ppb (v/v) 17
1,2-Dichlorobenzene	ND	ppb (v/v	17
1,2,4-Trichlorobensene	ND	ppb (v/v	34
Hexachlorobutadiene	ND	ppb (v/v	34

ND - Not detected NA = Not applicable

Reported By: Jason Men

Volatile Organics by GCKS - RPA TO14

Client Name: Management Watson Client ID: AT-IN-4 (F2DES) Lab ID: 110900-0001-8A Matrix: AIR

Matrix:AIRSampled: 29 MAR 95Received: 30 MAR 95Authorized:30 MAR 95Prepared: NAAnalyzed: 31 MAR 95

			Reporting
Parameter	Result	Unite	Limit
Dichlorodifluoromethane	ND	bbp (a/a)	
Chloromethane	MD	ppb (4/4)	340
1,2-Dichloro-1,1,2,2-			
tetrafluoroethane	MD	DDp (A/A)	
Vinyl chloride	1800	ppb (v/v)	
Bromomethane	ND	ppb (Y/Y)	
Chloroethane	ND	bbp (a/a)	
Trichlorofluoromethane	ND	ppb (Y/Y)	
1,1-Dichloroethene	ND	ppb (Y/Y)	
Carbon disulfide	ND	ppb (v/v)	840
1,1,2-Trichloro-1,2,2-			
trifluoroethane	ND	ppb (v/v)	
Acetone	ND	ppb (v/v)	
Methylene chloride	ND	ppb (v/v)	
trans-1,2-Dichloroethene	440	ppb (v/v)	170
1,1-Dichloroethane	270	ppb (v/v)	
Vinyl acetate	ND	ppb (v/v)	840
cis-1,2-Dichloroethene	8200	ppb (v/v)	170
2-Butanone	ND	ppb (v/v)	840
Chloroform	ND	ppb (v/v)	170
1,1,1-Trichloroethane	2800	ppb (v/v)	170
Carbon tetrachloride	ND	ppb (v/v)	170
Benzene	ИD	ppb (Y/Y)	170
1,2-Dichloroethane	ND	ppb (v/v)	170
Trichloroethene	12000	ppb (v/v)	170
1.2-Dichloropropane	ND	ppb (v/v)	170
Bromodichloromethane	ND	ppb (v/v)	
cis-1,3-Dichloropropens	ND	ppb (v/v)	170
4-Methyl-2-pentanone	ND	ppb (Y/V)	340
Toluene	990	ppb (v/v)	170
trans-1,3-Dichloropropene	ND	ppb (v/v)	
1,1,2-Trichloroethane	ND	ppb (v/v)	
Tetrachloroethene	1900	ppb (v/v)	
2-Hexanone	ND	ppb (v/v)	340
Dibromochloromethane	ND	ppb (v/v	•
1,2-Dibromoethane (EDB)	ND	ppb (v/v	
Chlorobenzene	ND	ppb (V/V	•
Ethylbensene	ND	ppb (Y/V)	•
Xylenes (total)	ND	ppb (Y/V	
Styrene	MD	ppb (v/v	
Bromoform	ND	ppb (v/v	
···· ·		' '	•

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Jason Men

Services

Volatile Organics by GCMS - EPA TOI4 (CONT.)

Client ID: AT-IH-4 (9218B)

Lab ID: 110900-0001-8A
Matrix: AIR
Authorized: 30 MAR 95 Sampled: 29 MAR 95 Received: 30 MAR 95 Prepared: NA Analyzed: 31 MAR 95 Prepared: NA

Parameter	Result	Reporting Units Limit	f
1,1,2,2-Tetrachloroethane	ND	ppb (v/v) 170	
Bensyl chloride	ND	ppb (v/v) 170	
4-Ethyl toluene	MD	ppb (v/v) 170	
1,3,5-Trimethylbenzene	MD	ppb (v/v) 170	
1,2,4-Trimethylbensene	MD	ppb (v/v) 170	
1,3-Dichlorobensene	MD	ppb (v/v) 170	
1,4-Dichlorobenzene	ND	ppb (v/v) 170	
1,2-Dichlorobenzene	ND	ppb (v/v) 170	
1,2,4-Trichlorobenzene	ND	ppb (v/v) 340	
Hexachlorobutadiene	ND	ppb (v/v) 340	

ND - Not detected MA = Not applicable

Reported By: Jason Man

Volatile Organics by GCMS - EPA TO14

Client Name: Abnt:growing Wattison
Client ID: AT-EFF-4 (A-306)
Lab ID: 110900-0002-SA
Hatrix: AIR

Hatrix: AIR Sampled: 29 MAR 95 Received: 30 MAR 95 Authorized: 30 MAR 95 Prepared: MA Analyzed: 31 MAR 95

Parameter Result Units Limit		- •-	-	Reporting
Chloromethane ND ppb (v/v) 100 1,2-Dichloro-1,1,2,2-	Parameter	Result	Units	Limit
1,2-Dichloro-1,1,2,2- tetrafluoroethane	Dichlorodifluoromethane	ND		
tetrafluoroethane ND ppb (v/v) 51 Vinyl chloride 1700 ppb (v/v) 51 Bromomethane ND ppb (v/v) 51 Chloroethane ND ppb (v/v) 51 Chloroethane ND ppb (v/v) 51 1,1-Dichloroethane 210 ppb (v/v) 51 1,1-Dichloroethane ND ppb (v/v) 250 1,1,2-Trichloro-1,2,2- trifluoroethane ND ppb (v/v) 51 Acetone ND ppb (v/v) 51 Methylene chloride ND ppb (v/v) 51 trans-1,2-Dichloroethane 450 ppb (v/v) 51 1,1-Dichloroethane 100 ppb (v/v) 51 Vinyl acetate ND ppb (v/v) 250		MD	bbp (a/a) 100
Vinyl chloride 1700 ppb (v/v) 51 Bromomethane MD ppb (v/v) 51 Chloroethane MD ppb (v/v) 100 Trichlorofluoromethane MD ppb (v/v) 51 1,1-Dichloroethane 210 ppb (v/v) 51 Carbon disulfide MD ppb (v/v) 250 1,1,2-Trichloro-1,2,2- trifluoroethane MD ppb (v/v) 51 Acetone MD ppb (v/v) 250 Methylene chloride MD ppb (v/v) 51 trans-1,2-Dichloroethane 450 ppb (v/v) 51 1,1-Dichloroethane 100 ppb (v/v) 51 Vinyl acetate MD ppb (v/v) 250	1,2-Dichloro-1,1,2,2-			
### Bromomethane ### ### ### ### #### #### ##########				,
Chloroethane ND ppb (v/v) 100 Trichlorofluoromethane ND ppb (v/v) 51 1,1-Dichloroethane 210 ppb (v/v) 51 Carbon disulfide ND ppb (v/v) 250 1,1,2-Trichloro-1,2,2- trifluoroethane ND ppb (v/v) 51 Acetone ND ppb (v/v) 250 Methylene chloride ND ppb (v/v) 51 trans-1,2-Dichloroethane 450 ppb (v/v) 51 1,1-Dichloroethane 100 ppb (v/v) 51 Vinyl acetate ND ppb (v/v) 250	Vinyl chloride	1700		,
Trichlorofluoromethane	Bromomethane	MD		,
1,1-Dichloroethene 210 ppb (v/v) 51 Carbon disulfide 1MD ppb (v/v) 250 1,1,2-Trichloro-1,2,2- trifluoroethane 1MD ppb (v/v) 51 Acetone 1MD ppb (v/v) 250 Methylene chloride 1MD ppb (v/v) 250 Methylene chloroethene 450 ppb (v/v) 51 trans-1,2-Dichloroethene 100 ppb (v/v) 51 1,1-Dichloroethane 100 ppb (v/v) 51 Vinyl acetate 1MD ppb (v/v) 250	Chloroethane		' '	,
Carbon disulfide ND ppb (v/v) 250 1,1,2-Trichloro-1,2,2- trifluoroethane MD ppb (v/v) 51 Acetone MD ppb (v/v) 250 Methylene chloride MD ppb (v/v) 51 trans-1,2-Dichloroethane 450 ppb (v/v) 51 1,1-Dichloroethane 100 ppb (v/v) 51 Vinyl acetate ND ppb (v/v) 250				,
1,1,2-Trichloro-1,2,2- trifluoroethane				
trifluoroethane MD ppb (v/v) 51 Acetone MD ppb (v/v) 250 Methylene chloride MD ppb (v/v) 51 trans=1,2-Dichloroethene 450 ppb (v/v) 51 1,1-Dichloroethane 100 ppb (v/v) 51 Vinyl acetate MD ppb (v/v) 250		MD	ppb (v/v) 250
Acetone ND ppb (v/v) 250 Methylene chloride ND ppb (v/v) 51 trans=1,2-Dichloroethene 450 ppb (v/v) 51 1,1-Dichloroethene 100 ppb (v/v) 51 Vinyl acetate ND ppb (v/v) 250	• •			_ •
Methylene chlorideNDppb (v/v)51trans=1,2-Dichloroethene450ppb (v/v)511,1-Dichloroethane100ppb (v/v)51Vinyl acetateNDppb (v/v)250	trifluoroethane			,
trans=1,2-Dichloroethene 450 ppb (v/v) 51 1,1-Dichloroethene 100 ppb (v/v) 51 Vinyl acetate MD ppb (v/v) 250				,
1,1-Dichloroethane 100 ppb (v/v) 51 Vinyl acetate ND ppb (v/v) 250			• • • •	
Vinyl acetate MD ppb (v/v) 250	trans-1,2-Dichloroethene			, – –
The state of the s	1,1-Dichloroethane	100		
clant 2-Bichlorosthese 4000 mmh (V/V) 51	Vinyl acetate	MD	ppb (v/v	,
	cis-1,2-Dichloroethene	4000	ppb (v/v	•
2-Butanone MD ppb (v/v) 250	2-Butanone	MD	ppb (v/v) 250
Chloroform ND ppb (v/v) 51	Chloroform	MD	ppb (v/v) 51
1,1,1-Trichloroethane 360 ppb (v/v) 51	1,1,1-Trichloroethane	360	ppb (v/v) 51
Carbon tetrachloride MD ppb (v/v) 51	Carbon tetrachloride	MD	ppb (v/v	,
Bensene HD ppb (v/v) 51	Benzene	MD	•••	,
1,2-Dichloroethane ND ppb (v/v) 51	1,2-Dichloroethane	ND	bbp (a\a) 51
Trichloroethene 760 ppb (v/v) 51	Trichloroethene	760	ppb {v/v) 51
1,2-Dichloropropane ND ppb (v/v) 51	1,2-Dichloropropane	ND	ppb (v/v) 51
Bromodichloromethane MD ppb (v/v) 51	Bromodichloromethane	ND	ppb (v/v) 51
cis-1,3-Dichloropropens ND ppb (v/v) 51	cis-1,3-Dichloropropene	MD	ppb (v/v) 51
4-Methyl-2-pentanone ND ppb (v/v) 100	4-Methyl-2-pentanone	MD	ppb (v/v) 100
Toluene BD ppb (v/v) 51	Toluene	MD	ppb (v/v) 51
trans-1,3-Dichloropropene HD ppb (v/v) 51	trans-1,3-Dichloropropene	MD	ppb (v/v) 51
1,1.2-Trichloroethane ND ppb (v/v) 51	1,1,2-Trichloroethane	ND	ppb (v/v	51
Tetrachloroethene 68 ppb (v/v) 51	Tetrachloroethene	68	ppb (v/v) 51
2-Hexanone ND ppb (v/v) 100	2-Hexanone	MD	ppb (v/v) 100
Dibromochloromethane ND ppb (v/v) 51	Dibromochloromethane	ND	ppb (Y/Y) 51
1,2~Dibromoethane (EDE) ND ppb (v/v) 51	1,2-Dibromoethane (EDE)	ND	ppb (v/v) 51
Chlorobenzene ND ppb (v/v) 51	Chlorobensene	MD	ppb (v/v) 51
Ethylbensene ND ppb (v/v) 51	Ethylbensene	MD		
Xylenes (total) ND ppb (v/v) 51	Xylenes (total)	ND	ppb (v/v) 51
Styrene ND ppb (v/v) 51	Styrene	MD	ppb (v/v) 51
Bromoform ND ppb (v/v) 51	Bromoform	ND	ppb (v/v) 51

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Jason Men

Client ID: AT-EFF-4 (A-306)
Lab ID: 110900-0002-8A

Matrix: AIR Sampled: 29 MAR 95 Received: 30 MAR 95 Authorized: 30 MAR 95 Prepared: NA Analyzed: 31 MAR 95

Parameter	Result	Units	Reporting Limit
1,1,2,2-Tetrschloroethane	MD	ppb (v/v) 51
Bensyl chloride	MD	ppb (v/v	51
4-Ethyl toluene	ND	bbp (A\A	51
1,3,5-Trimethylbensene	ND	ppb (Y/V	51
1,2,4-Trimethylbensene	MD	bbp {A/A	51
1,3-Dichlorobensene	סא	ppb (Y/Y	51
1,4-Dichlorobensene	ND	ppb (v/v	51
1,2-Dichlorobensene	ND	ppb (v/v	51
1,2,4-Trichlorobenzene	ND	ppb (v/v	
Hexachlorobutadiene	ND	ppb (v/v	•

ND = Not detected NA = Not applicable

Reported By: Jason Men